MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sq Structured version   Unicode version

Theorem 2sq 22720
Description: All primes of the form  4 k  +  1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
2sq  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Distinct variable group:    x, y, P

Proof of Theorem 2sq
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  ran  (
w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2 ) )  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2 ) )
2 oveq1 6103 . . . . . . 7  |-  ( a  =  x  ->  (
a  gcd  b )  =  ( x  gcd  b ) )
32eqeq1d 2451 . . . . . 6  |-  ( a  =  x  ->  (
( a  gcd  b
)  =  1  <->  (
x  gcd  b )  =  1 ) )
4 oveq1 6103 . . . . . . . 8  |-  ( a  =  x  ->  (
a ^ 2 )  =  ( x ^
2 ) )
54oveq1d 6111 . . . . . . 7  |-  ( a  =  x  ->  (
( a ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )
65eqeq2d 2454 . . . . . 6  |-  ( a  =  x  ->  (
z  =  ( ( a ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) )
73, 6anbi12d 710 . . . . 5  |-  ( a  =  x  ->  (
( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^
2 )  +  ( b ^ 2 ) ) ) ) )
8 oveq2 6104 . . . . . . 7  |-  ( b  =  y  ->  (
x  gcd  b )  =  ( x  gcd  y ) )
98eqeq1d 2451 . . . . . 6  |-  ( b  =  y  ->  (
( x  gcd  b
)  =  1  <->  (
x  gcd  y )  =  1 ) )
10 oveq1 6103 . . . . . . . 8  |-  ( b  =  y  ->  (
b ^ 2 )  =  ( y ^
2 ) )
1110oveq2d 6112 . . . . . . 7  |-  ( b  =  y  ->  (
( x ^ 2 )  +  ( b ^ 2 ) )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1211eqeq2d 2454 . . . . . 6  |-  ( b  =  y  ->  (
z  =  ( ( x ^ 2 )  +  ( b ^
2 ) )  <->  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
139, 12anbi12d 710 . . . . 5  |-  ( b  =  y  ->  (
( ( x  gcd  b )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( b ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
147, 13cbvrex2v 2961 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  gcd  b
)  =  1  /\  z  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
1514abbii 2560 . . 3  |-  { z  |  E. a  e.  ZZ  E. b  e.  ZZ  ( ( a  gcd  b )  =  1  /\  z  =  ( ( a ^
2 )  +  ( b ^ 2 ) ) ) }  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
161, 152sqlem11 22719 . 2  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  P  e.  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) ) )
1712sqlem2 22708 . 2  |-  ( P  e.  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w ) ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
1816, 17sylib 196 1  |-  ( ( P  e.  Prime  /\  ( P  mod  4 )  =  1 )  ->  E. x  e.  ZZ  E. y  e.  ZZ  P  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2721    e. cmpt 4355   ran crn 4846   ` cfv 5423  (class class class)co 6096   1c1 9288    + caddc 9290   2c2 10376   4c4 10378   ZZcz 10651    mod cmo 11713   ^cexp 11870   abscabs 12728    gcd cgcd 13695   Primecprime 13768   ZZ[_i]cgz 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-ofr 6326  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-ec 7108  df-qs 7112  df-map 7221  df-pm 7222  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-sup 7696  df-oi 7729  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-q 10959  df-rp 10997  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-gcd 13696  df-prm 13769  df-phi 13846  df-pc 13909  df-gz 13996  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-hom 14267  df-cco 14268  df-0g 14385  df-gsum 14386  df-prds 14391  df-pws 14393  df-imas 14451  df-divs 14452  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-nsg 15684  df-eqg 15685  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-srg 16613  df-rng 16652  df-cring 16653  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-dvr 16780  df-rnghom 16811  df-drng 16839  df-field 16840  df-subrg 16868  df-lmod 16955  df-lss 17019  df-lsp 17058  df-sra 17258  df-rgmod 17259  df-lidl 17260  df-rsp 17261  df-2idl 17319  df-nzr 17345  df-rlreg 17359  df-domn 17360  df-idom 17361  df-assa 17389  df-asp 17390  df-ascl 17391  df-psr 17428  df-mvr 17429  df-mpl 17430  df-opsr 17432  df-evls 17593  df-evl 17594  df-psr1 17641  df-vr1 17642  df-ply1 17643  df-coe1 17644  df-evl1 17756  df-cnfld 17824  df-zring 17889  df-zrh 17940  df-zn 17943  df-mdeg 21529  df-deg1 21530  df-mon1 21607  df-uc1p 21608  df-q1p 21609  df-r1p 21610  df-lgs 22639
This theorem is referenced by:  2sqb  22722
  Copyright terms: Public domain W3C validator