MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2spotdisj Structured version   Unicode version

Theorem 2spotdisj 25263
Description: All simple paths of length 2 as ordered triple from a fixed vertex to another vertex are disjunct. (Contributed by Alexander van der Vekens, 4-Mar-2018.)
Assertion
Ref Expression
2spotdisj  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  -> Disj  b  e.  ( V  \  { A } ) ( A ( V 2SPathOnOt  E )
b ) )
Distinct variable groups:    A, b    E, b    V, b    X, b    Y, b

Proof of Theorem 2spotdisj
Dummy variables  c 
f  g  p  q  s  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 383 . . . . . . . . . 10  |-  ( b  =  c  ->  (
b  =  c  \/  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
21a1d 25 . . . . . . . . 9  |-  ( b  =  c  ->  (
( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } )  -> 
( b  =  c  \/  ( ( A ( V 2SPathOnOt  E )
b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
3 2spthonot 25068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  b  e.  V ) )  -> 
( A ( V 2SPathOnOt  E ) b )  =  { s  e.  ( ( V  X.  V )  X.  V
)  |  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) } )
43anassrs 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  ->  ( A ( V 2SPathOnOt  E ) b )  =  {
s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) } )
54adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  c  e.  V )  ->  ( A ( V 2SPathOnOt  E ) b )  =  {
s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) } )
6 2spthonot 25068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  c  e.  V ) )  -> 
( A ( V 2SPathOnOt  E ) c )  =  { u  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
76anassrs 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  c  e.  V )  ->  ( A ( V 2SPathOnOt  E ) c )  =  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
87adantlr 712 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  c  e.  V )  ->  ( A ( V 2SPathOnOt  E ) c )  =  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
95, 8ineq12d 3687 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  c  e.  V )  ->  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  ( { s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  i^i  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
109adantlr 712 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  ->  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  ( { s  e.  ( ( V  X.  V )  X.  V
)  |  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  i^i  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
1110ad2antrl 725 . . . . . . . . . . . 12  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  ( ( A ( V 2SPathOnOt  E )
b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  ( { s  e.  ( ( V  X.  V )  X.  V
)  |  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  i^i  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
12 eqtr2 2481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( 2nd `  t
)  =  b  /\  ( 2nd `  t )  =  c )  -> 
b  =  c )
1312ex 432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 2nd `  t )  =  b  ->  (
( 2nd `  t
)  =  c  -> 
b  =  c ) )
1413con3rr3 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( -.  b  =  c  -> 
( ( 2nd `  t
)  =  b  ->  -.  ( 2nd `  t
)  =  c ) )
1514adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  ( ( 2nd `  t )  =  b  ->  -.  ( 2nd `  t )  =  c ) )
1615adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  ( ( 2nd `  t )  =  b  ->  -.  ( 2nd `  t )  =  c ) )
1716com12 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 2nd `  t )  =  b  ->  (
( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  -.  ( 2nd `  t )  =  c ) )
18173ad2ant3 1017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b )  ->  ( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  -.  ( 2nd `  t )  =  c ) )
19183ad2ant3 1017 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) )  -> 
( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  -.  ( 2nd `  t )  =  c ) )
2019impcom 428 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) ) )  ->  -.  ( 2nd `  t )  =  c )
2120intn3an3d 1338 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) ) )  ->  -.  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  c ) )
22213mix3d 1171 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) ) )  ->  ( -.  f
( A ( V SPathOn  E ) c ) p  \/  -.  ( # `
 f )  =  2  \/  -.  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
2322ex 432 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  ( (
g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) )  -> 
( -.  f ( A ( V SPathOn  E
) c ) p  \/  -.  ( # `  f )  =  2  \/  -.  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
2423exlimdvv 1730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  ( E. g E. q ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) )  -> 
( -.  f ( A ( V SPathOn  E
) c ) p  \/  -.  ( # `  f )  =  2  \/  -.  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
2524imp 427 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )  ->  ( -.  f ( A ( V SPathOn  E ) c ) p  \/  -.  ( # `
 f )  =  2  \/  -.  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
2625alrimivv 1725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )  ->  A. f A. p ( -.  f
( A ( V SPathOn  E ) c ) p  \/  -.  ( # `
 f )  =  2  \/  -.  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
27 2nexaln 1656 . . . . . . . . . . . . . . . . . . . 20  |-  ( -. 
E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) )  <->  A. f A. p  -.  ( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
28 3ianor 988 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  ( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) )  <->  ( -.  f
( A ( V SPathOn  E ) c ) p  \/  -.  ( # `
 f )  =  2  \/  -.  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
2928bicomi 202 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  f ( A ( V SPathOn  E )
c ) p  \/ 
-.  ( # `  f
)  =  2  \/ 
-.  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  c ) )  <->  -.  (
f ( A ( V SPathOn  E ) c ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  c ) ) )
30292albii 1646 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. f A. p ( -.  f ( A ( V SPathOn  E ) c ) p  \/  -.  ( # `
 f )  =  2  \/  -.  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) )  <->  A. f A. p  -.  ( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
3127, 30bitr4i 252 . . . . . . . . . . . . . . . . . . 19  |-  ( -. 
E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) )  <->  A. f A. p
( -.  f ( A ( V SPathOn  E
) c ) p  \/  -.  ( # `  f )  =  2  \/  -.  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
3226, 31sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )  ->  -.  E. f E. p ( f ( A ( V SPathOn  E ) c ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( p ` 
1 )  /\  ( 2nd `  t )  =  c ) ) )
3332intnand 914 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )  ->  -.  ( t  e.  ( ( V  X.  V
)  X.  V )  /\  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
34 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  t  ->  ( 1st `  u )  =  ( 1st `  t
) )
3534fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  t  ->  ( 1st `  ( 1st `  u
) )  =  ( 1st `  ( 1st `  t ) ) )
3635eqeq1d 2456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  t  ->  (
( 1st `  ( 1st `  u ) )  =  A  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
3734fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  t  ->  ( 2nd `  ( 1st `  u
) )  =  ( 2nd `  ( 1st `  t ) ) )
3837eqeq1d 2456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  t  ->  (
( 2nd `  ( 1st `  u ) )  =  ( p ` 
1 )  <->  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 ) ) )
39 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  t  ->  ( 2nd `  u )  =  ( 2nd `  t
) )
4039eqeq1d 2456 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  t  ->  (
( 2nd `  u
)  =  c  <->  ( 2nd `  t )  =  c ) )
4136, 38, 403anbi123d 1297 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  t  ->  (
( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c )  <-> 
( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) )
42413anbi3d 1303 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  t  ->  (
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) )  <->  ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
43422exbidv 1721 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  t  ->  ( E. f E. p ( f ( A ( V SPathOn  E ) c ) p  /\  ( # `  f )  =  2  /\  ( ( 1st `  ( 1st `  u
) )  =  A  /\  ( 2nd `  ( 1st `  u ) )  =  ( p ` 
1 )  /\  ( 2nd `  u )  =  c ) )  <->  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
4443elrab 3254 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  { u  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) }  <->  ( t  e.  ( ( V  X.  V )  X.  V
)  /\  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( p `  1 )  /\  ( 2nd `  t
)  =  c ) ) ) )
4533, 44sylnibr 303 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( -.  b  =  c  /\  (
( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  /\  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )  ->  -.  t  e.  { u  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
4645ex 432 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  /\  t  e.  ( ( V  X.  V
)  X.  V ) )  ->  ( E. g E. q ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  t
) )  =  A  /\  ( 2nd `  ( 1st `  t ) )  =  ( q ` 
1 )  /\  ( 2nd `  t )  =  b ) )  ->  -.  t  e.  { u  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
4746ralrimiva 2868 . . . . . . . . . . . . . 14  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  A. t  e.  ( ( V  X.  V
)  X.  V ) ( E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) )  ->  -.  t  e.  { u  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
48 fveq2 5848 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  t  ->  ( 1st `  s )  =  ( 1st `  t
) )
4948fveq2d 5852 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  t  ->  ( 1st `  ( 1st `  s
) )  =  ( 1st `  ( 1st `  t ) ) )
5049eqeq1d 2456 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  t  ->  (
( 1st `  ( 1st `  s ) )  =  A  <->  ( 1st `  ( 1st `  t
) )  =  A ) )
5148fveq2d 5852 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  t  ->  ( 2nd `  ( 1st `  s
) )  =  ( 2nd `  ( 1st `  t ) ) )
5251eqeq1d 2456 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  t  ->  (
( 2nd `  ( 1st `  s ) )  =  ( q ` 
1 )  <->  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 ) ) )
53 fveq2 5848 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  t  ->  ( 2nd `  s )  =  ( 2nd `  t
) )
5453eqeq1d 2456 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  t  ->  (
( 2nd `  s
)  =  b  <->  ( 2nd `  t )  =  b ) )
5550, 52, 543anbi123d 1297 . . . . . . . . . . . . . . . . 17  |-  ( s  =  t  ->  (
( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b )  <-> 
( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) )
56553anbi3d 1303 . . . . . . . . . . . . . . . 16  |-  ( s  =  t  ->  (
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) )  <->  ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) ) )
57562exbidv 1721 . . . . . . . . . . . . . . 15  |-  ( s  =  t  ->  ( E. g E. q ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  s
) )  =  A  /\  ( 2nd `  ( 1st `  s ) )  =  ( q ` 
1 )  /\  ( 2nd `  s )  =  b ) )  <->  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) ) ) )
5857ralrab 3258 . . . . . . . . . . . . . 14  |-  ( A. t  e.  { s  e.  ( ( V  X.  V )  X.  V
)  |  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  -.  t  e.  { u  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) }  <->  A. t  e.  ( ( V  X.  V )  X.  V
) ( E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  t ) )  =  A  /\  ( 2nd `  ( 1st `  t
) )  =  ( q `  1 )  /\  ( 2nd `  t
)  =  b ) )  ->  -.  t  e.  { u  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } ) )
5947, 58sylibr 212 . . . . . . . . . . . . 13  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  A. t  e.  {
s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  -.  t  e.  { u  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
60 disj 3855 . . . . . . . . . . . . 13  |-  ( ( { s  e.  ( ( V  X.  V
)  X.  V )  |  E. g E. q ( g ( A ( V SPathOn  E
) b ) q  /\  ( # `  g
)  =  2  /\  ( ( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  i^i  {
u  e.  ( ( V  X.  V )  X.  V )  |  E. f E. p
( f ( A ( V SPathOn  E )
c ) p  /\  ( # `  f )  =  2  /\  (
( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )  =  (/) 
<-> 
A. t  e.  {
s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q
( g ( A ( V SPathOn  E )
b ) q  /\  ( # `  g )  =  2  /\  (
( 1st `  ( 1st `  s ) )  =  A  /\  ( 2nd `  ( 1st `  s
) )  =  ( q `  1 )  /\  ( 2nd `  s
)  =  b ) ) }  -.  t  e.  { u  e.  ( ( V  X.  V
)  X.  V )  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )
6159, 60sylibr 212 . . . . . . . . . . . 12  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  ( { s  e.  ( ( V  X.  V )  X.  V )  |  E. g E. q ( g ( A ( V SPathOn  E ) b ) q  /\  ( # `  g )  =  2  /\  ( ( 1st `  ( 1st `  s
) )  =  A  /\  ( 2nd `  ( 1st `  s ) )  =  ( q ` 
1 )  /\  ( 2nd `  s )  =  b ) ) }  i^i  { u  e.  ( ( V  X.  V )  X.  V
)  |  E. f E. p ( f ( A ( V SPathOn  E
) c ) p  /\  ( # `  f
)  =  2  /\  ( ( 1st `  ( 1st `  u ) )  =  A  /\  ( 2nd `  ( 1st `  u
) )  =  ( p `  1 )  /\  ( 2nd `  u
)  =  c ) ) } )  =  (/) )
6211, 61eqtrd 2495 . . . . . . . . . . 11  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  ( ( A ( V 2SPathOnOt  E )
b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) )
6362olcd 391 . . . . . . . . . 10  |-  ( ( -.  b  =  c  /\  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } ) )  ->  ( b  =  c  \/  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
6463ex 432 . . . . . . . . 9  |-  ( -.  b  =  c  -> 
( ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } )  -> 
( b  =  c  \/  ( ( A ( V 2SPathOnOt  E )
b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
652, 64pm2.61i 164 . . . . . . . 8  |-  ( ( ( ( ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  /\  c  e/  { A } )  -> 
( b  =  c  \/  ( ( A ( V 2SPathOnOt  E )
b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
6665ex 432 . . . . . . 7  |-  ( ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V
)  /\  b  e.  V )  /\  b  e/  { A } )  /\  c  e.  V
)  ->  ( c  e/  { A }  ->  ( b  =  c  \/  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
6766ralrimiva 2868 . . . . . 6  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  ->  A. c  e.  V  ( c  e/  { A }  ->  ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
68 raldifb 3630 . . . . . 6  |-  ( A. c  e.  V  (
c  e/  { A }  ->  ( b  =  c  \/  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )  <->  A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
6967, 68sylib 196 . . . . 5  |-  ( ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  /\  b  e/  { A } )  ->  A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
7069ex 432 . . . 4  |-  ( ( ( ( V  e.  X  /\  E  e.  Y )  /\  A  e.  V )  /\  b  e.  V )  ->  (
b  e/  { A }  ->  A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
7170ralrimiva 2868 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  ->  A. b  e.  V  ( b  e/  { A }  ->  A. c  e.  ( V 
\  { A }
) ( b  =  c  \/  ( ( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) ) )
72 raldifb 3630 . . 3  |-  ( A. b  e.  V  (
b  e/  { A }  ->  A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )  <->  A. b  e.  ( V  \  { A }
) A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
7371, 72sylib 196 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  ->  A. b  e.  ( V  \  { A } ) A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
74 oveq2 6278 . . 3  |-  ( b  =  c  ->  ( A ( V 2SPathOnOt  E ) b )  =  ( A ( V 2SPathOnOt  E ) c ) )
7574disjor 4424 . 2  |-  (Disj  b  e.  ( V  \  { A } ) ( A ( V 2SPathOnOt  E )
b )  <->  A. b  e.  ( V  \  { A } ) A. c  e.  ( V  \  { A } ) ( b  =  c  \/  (
( A ( V 2SPathOnOt  E ) b )  i^i  ( A ( V 2SPathOnOt  E ) c ) )  =  (/) ) )
7673, 75sylibr 212 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  A  e.  V )  -> Disj  b  e.  ( V  \  { A } ) ( A ( V 2SPathOnOt  E )
b ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    \/ w3o 970    /\ w3a 971   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823    e/ wnel 2650   A.wral 2804   {crab 2808    \ cdif 3458    i^i cin 3460   (/)c0 3783   {csn 4016  Disj wdisj 4410   class class class wbr 4439    X. cxp 4986   ` cfv 5570  (class class class)co 6270   1stc1st 6771   2ndc2nd 6772   1c1 9482   2c2 10581   #chash 12387   SPathOn cspthon 24707   2SPathOnOt c2pthonot 25059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-2spthonot 25062
This theorem is referenced by:  frghash2spot  25265
  Copyright terms: Public domain W3C validator