MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Unicode version

Theorem 2sp 1867
Description: A double specialization (see sp 1860). Another double specialization, closer to PM*11.1, is 2stdpc4 2096. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp  |-  ( A. x A. y ph  ->  ph )

Proof of Theorem 2sp
StepHypRef Expression
1 sp 1860 . 2  |-  ( A. y ph  ->  ph )
21sps 1866 1  |-  ( A. x A. y ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-12 1855
This theorem depends on definitions:  df-bi 185  df-ex 1614
This theorem is referenced by:  cbv1h  2019  mopickOLD  2357  csbie2t  3459  copsex2t  4743  fundmpss  29414  wfrlem5  29564  frrlem5  29608  mbfresfi  30266  pm14.123b  31537  bj-cbv1hv  34436  ax11-pm  34548
  Copyright terms: Public domain W3C validator