Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbcrex Structured version   Unicode version

Theorem 2sbcrex 35339
Description: Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
Assertion
Ref Expression
2sbcrex  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
Distinct variable groups:    A, c    B, c    C, b    a, c   
b, c    C, a
Allowed substitution hints:    ph( a, b, c)    A( a, b)    B( a, b)    C( c)

Proof of Theorem 2sbcrex
StepHypRef Expression
1 sbcrex 3381 . . 3  |-  ( [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. B  / 
b ]. ph )
21sbcbii 3361 . 2  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  [. A  / 
a ]. E. c  e.  C  [. B  / 
b ]. ph )
3 sbcrex 3381 . 2  |-  ( [. A  /  a ]. E. c  e.  C  [. B  /  b ]. ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
42, 3bitri 252 1  |-  ( [. A  /  a ]. [. B  /  b ]. E. c  e.  C  ph  <->  E. c  e.  C  [. A  / 
a ]. [. B  / 
b ]. ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187   E.wrex 2783   [.wsbc 3305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-v 3089  df-sbc 3306
This theorem is referenced by:  2rexfrabdioph  35351  4rexfrabdioph  35353
  Copyright terms: Public domain W3C validator