Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sb6rfOLD Structured version   Unicode version

Theorem 2sb6rfOLD 2171
 Description: Obsolete proof of 2sb6rf 2169 as of 26-Sep-2018. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2sb5rfOLD.1
2sb5rfOLD.2
Assertion
Ref Expression
2sb6rfOLD
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,,,)

Proof of Theorem 2sb6rfOLD
StepHypRef Expression
1 2sb5rfOLD.1 . . 3
21sb6rf 2132 . 2
3 19.21v 1921 . . . 4
4 sbcom2 2160 . . . . . . 7
54imbi2i 312 . . . . . 6
6 impexp 446 . . . . . 6
75, 6bitri 249 . . . . 5
87albii 1611 . . . 4
9 2sb5rfOLD.2 . . . . . . 7
109nfsb 2155 . . . . . 6
1110sb6rf 2132 . . . . 5
1211imbi2i 312 . . . 4
133, 8, 123bitr4ri 278 . . 3
1413albii 1611 . 2
152, 14bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1368  wnf 1590  wsb 1702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator