MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sb5rfOLD Structured version   Unicode version

Theorem 2sb5rfOLD 2170
Description: Obsolete proof of 2sb5rf 2168 as of 28-Sep-2018. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2sb5rfOLD.1  |-  F/ z
ph
2sb5rfOLD.2  |-  F/ w ph
Assertion
Ref Expression
2sb5rfOLD  |-  ( ph  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph ) )
Distinct variable groups:    x, y    x, w    y, z    z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem 2sb5rfOLD
StepHypRef Expression
1 2sb5rfOLD.1 . . 3  |-  F/ z
ph
21sb5rf 2130 . 2  |-  ( ph  <->  E. z ( z  =  x  /\  [ z  /  x ] ph ) )
3 19.42v 1936 . . . 4  |-  ( E. w ( z  =  x  /\  ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  [ w  / 
y ] [ z  /  x ] ph ) ) )
4 sbcom2 2160 . . . . . . 7  |-  ( [ z  /  x ] [ w  /  y ] ph  <->  [ w  /  y ] [ z  /  x ] ph )
54anbi2i 694 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph )  <->  ( (
z  =  x  /\  w  =  y )  /\  [ w  /  y ] [ z  /  x ] ph ) )
6 anass 649 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ w  /  y ] [
z  /  x ] ph )  <->  ( z  =  x  /\  ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) ) )
75, 6bitri 249 . . . . 5  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph )  <->  ( z  =  x  /\  (
w  =  y  /\  [ w  /  y ] [ z  /  x ] ph ) ) )
87exbii 1635 . . . 4  |-  ( E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [ w  /  y ] ph )  <->  E. w
( z  =  x  /\  ( w  =  y  /\  [ w  /  y ] [
z  /  x ] ph ) ) )
9 2sb5rfOLD.2 . . . . . . 7  |-  F/ w ph
109nfsb 2155 . . . . . 6  |-  F/ w [ z  /  x ] ph
1110sb5rf 2130 . . . . 5  |-  ( [ z  /  x ] ph 
<->  E. w ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) )
1211anbi2i 694 . . . 4  |-  ( ( z  =  x  /\  [ z  /  x ] ph )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  [ w  / 
y ] [ z  /  x ] ph ) ) )
133, 8, 123bitr4ri 278 . . 3  |-  ( ( z  =  x  /\  [ z  /  x ] ph )  <->  E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [ w  /  y ] ph ) )
1413exbii 1635 . 2  |-  ( E. z ( z  =  x  /\  [ z  /  x ] ph ) 
<->  E. z E. w
( ( z  =  x  /\  w  =  y )  /\  [
z  /  x ] [ w  /  y ] ph ) )
152, 14bitri 249 1  |-  ( ph  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   E.wex 1587   F/wnf 1590   [wsb 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator