Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2rexfrabdioph Structured version   Unicode version

Theorem 2rexfrabdioph 35392
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
rexfrabdioph.2  |-  L  =  ( M  +  1 )
Assertion
Ref Expression
2rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
Distinct variable groups:    u, t,
v, w, L    t, M, u, v, w    t, N, u, v, w    ph, t
Allowed substitution hints:    ph( w, v, u)

Proof of Theorem 2rexfrabdioph
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 2sbcrex 35380 . . . . 5  |-  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph  <->  E. w  e.  NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph )
21a1i 11 . . . 4  |-  ( a  e.  ( NN0  ^m  ( 1 ... M
) )  ->  ( [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph  <->  E. w  e.  NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph ) )
32rabbiia 3067 . . 3  |-  { a  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. E. w  e.  NN0  ph }  =  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }
4 rexfrabdioph.1 . . . . . 6  |-  M  =  ( N  +  1 )
5 peano2nn0 10899 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
64, 5syl5eqel 2512 . . . . 5  |-  ( N  e.  NN0  ->  M  e. 
NN0 )
76adantr 466 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  M  e.  NN0 )
8 sbcrot3 35387 . . . . . . . . 9  |-  ( [. ( t `  L
)  /  w ]. [. ( a  |`  (
1 ... N ) )  /  u ]. [. (
a `  M )  /  v ]. ph  <->  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
98sbcbii 3352 . . . . . . . 8  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
t `  L )  /  w ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. ph  <->  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
10 reseq1 5110 . . . . . . . . . 10  |-  ( a  =  ( t  |`  ( 1 ... M
) )  ->  (
a  |`  ( 1 ... N ) )  =  ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
1110sbccomieg 35389 . . . . . . . . 9  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
12 fzssp1 11828 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
134oveq2i 6307 . . . . . . . . . . . 12  |-  ( 1 ... M )  =  ( 1 ... ( N  +  1 ) )
1412, 13sseqtr4i 3494 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 1 ... M
)
15 resabs1 5144 . . . . . . . . . . 11  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) ) )
16 dfsbcq 3298 . . . . . . . . . . 11  |-  ( ( ( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( t  |`  ( 1 ... N ) )  ->  ( [. (
( t  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
1714, 15, 16mp2b 10 . . . . . . . . . 10  |-  ( [. ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( a `  M )  /  v ]. [. ( t `  L )  /  w ]. ph )
18 vex 3081 . . . . . . . . . . . . . 14  |-  t  e. 
_V
1918resex 5159 . . . . . . . . . . . . 13  |-  ( t  |`  ( 1 ... M
) )  e.  _V
20 fveq1 5871 . . . . . . . . . . . . . 14  |-  ( a  =  ( t  |`  ( 1 ... M
) )  ->  (
a `  M )  =  ( ( t  |`  ( 1 ... M
) ) `  M
) )
2120sbcco3g 3813 . . . . . . . . . . . . 13  |-  ( ( t  |`  ( 1 ... M ) )  e.  _V  ->  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) ) `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph ) )
2219, 21ax-mp 5 . . . . . . . . . . . 12  |-  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( ( t  |`  ( 1 ... M ) ) `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph )
23 nn0p1nn 10898 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
244, 23syl5eqel 2512 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  NN )
25 elfz1end 11816 . . . . . . . . . . . . . 14  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
2624, 25sylib 199 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
27 fvres 5886 . . . . . . . . . . . . 13  |-  ( M  e.  ( 1 ... M )  ->  (
( t  |`  (
1 ... M ) ) `
 M )  =  ( t `  M
) )
28 dfsbcq 3298 . . . . . . . . . . . . 13  |-  ( ( ( t  |`  (
1 ... M ) ) `
 M )  =  ( t `  M
)  ->  ( [. ( ( t  |`  ( 1 ... M
) ) `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph  <->  [. ( t `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph ) )
2926, 27, 283syl 18 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... M
) ) `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph  <->  [. ( t `  M
)  /  v ]. [. ( t `  L
)  /  w ]. ph ) )
3022, 29syl5bb 260 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( t `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph ) )
3130sbcbidv 3351 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
3217, 31syl5bb 260 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( [. ( ( t  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /  u ]. [. (
t  |`  ( 1 ... M ) )  / 
a ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
3311, 32syl5bb 260 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... M ) )  /  a ]. [. (
a  |`  ( 1 ... N ) )  /  u ]. [. ( a `
 M )  / 
v ]. [. ( t `
 L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph ) )
349, 33syl5rbb 261 . . . . . . 7  |-  ( N  e.  NN0  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t `  M )  /  v ]. [. (
t `  L )  /  w ]. ph  <->  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph ) )
3534rabbidv 3070 . . . . . 6  |-  ( N  e.  NN0  ->  { t  e.  ( NN0  ^m  ( 1 ... L
) )  |  [. ( t  |`  (
1 ... N ) )  /  u ]. [. (
t `  M )  /  v ]. [. (
t `  L )  /  w ]. ph }  =  { t  e.  ( NN0  ^m  ( 1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph } )
3635eleq1d 2489 . . . . 5  |-  ( N  e.  NN0  ->  ( { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L )  <->  { t  e.  ( NN0  ^m  (
1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) ) )
3736biimpa 486 . . . 4  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... L ) )  |  [. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) )
38 rexfrabdioph.2 . . . . 5  |-  L  =  ( M  +  1 )
3938rexfrabdioph 35391 . . . 4  |-  ( ( M  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... M
) )  /  a ]. [. ( t `  L )  /  w ]. [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  M ) )
407, 37, 39syl2anc 665 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  E. w  e. 
NN0  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. ph }  e.  (Dioph `  M ) )
413, 40syl5eqel 2512 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. E. w  e.  NN0  ph }  e.  (Dioph `  M ) )
424rexfrabdioph 35391 . 2  |-  ( ( N  e.  NN0  /\  { a  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( a  |`  ( 1 ... N
) )  /  u ]. [. ( a `  M )  /  v ]. E. w  e.  NN0  ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
4341, 42syldan 472 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... L ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. [. ( t `  L )  /  w ]. ph }  e.  (Dioph `  L ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  E. w  e.  NN0  ph }  e.  (Dioph `  N )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867   E.wrex 2774   {crab 2777   _Vcvv 3078   [.wsbc 3296    C_ wss 3433    |` cres 4847   ` cfv 5592  (class class class)co 6296    ^m cmap 7471   1c1 9529    + caddc 9531   NNcn 10598   NN0cn0 10858   ...cfz 11771  Diophcdioph 35350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-n0 10859  df-z 10927  df-uz 11149  df-fz 11772  df-hash 12502  df-mzpcl 35318  df-mzp 35319  df-dioph 35351
This theorem is referenced by:  3rexfrabdioph  35393  4rexfrabdioph  35394  6rexfrabdioph  35395
  Copyright terms: Public domain W3C validator