Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexbiia Structured version   Unicode version

Theorem 2rexbiia 2951
 Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
2rexbiia.1
Assertion
Ref Expression
2rexbiia
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem 2rexbiia
StepHypRef Expression
1 2rexbiia.1 . . 3
21rexbidva 2943 . 2
32rexbiia 2933 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   wcel 1870  wrex 2783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-rex 2788 This theorem is referenced by:  cnref1o  11297  mndpfo  16511  mdsymlem8  27898  xlt2addrd  28179  elunirnmbfm  28914  icoreelrnab  31491
 Copyright terms: Public domain W3C validator