Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reurmo Structured version   Unicode version

Theorem 2reurmo 38003
Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one.", analogous to 2eumo 2345. (Contributed by Alexander van der Vekens, 24-Jun-2017.)
Assertion
Ref Expression
2reurmo  |-  ( E! x  e.  A  E* y  e.  B  ph  ->  E* x  e.  A  E! y  e.  B  ph )
Distinct variable groups:    y, A    x, y    x, B
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem 2reurmo
StepHypRef Expression
1 reuimrmo 37999 . 2  |-  ( A. x  e.  A  ( E! y  e.  B  ph 
->  E* y  e.  B  ph )  ->  ( E! x  e.  A  E* y  e.  B  ph  ->  E* x  e.  A  E! y  e.  B  ph )
)
2 reurmo 3053 . . 3  |-  ( E! y  e.  B  ph  ->  E* y  e.  B  ph )
32a1i 11 . 2  |-  ( x  e.  A  ->  ( E! y  e.  B  ph 
->  E* y  e.  B  ph ) )
41, 3mprg 2795 1  |-  ( E! x  e.  A  E* y  e.  B  ph  ->  E* x  e.  A  E! y  e.  B  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1870   E!wreu 2784   E*wrmo 2785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-12 1907
This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-eu 2270  df-mo 2271  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator