Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu8 Unicode version

Theorem 2reu8 27837
Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu8 2341. Curiously, we can put  E! on either of the internal conjuncts but not both. We can also commute  E! x  e.  A E! y  e.  B using 2reu7 27836. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
2reu8  |-  ( E! x  e.  A  E! y  e.  B  ( E. x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  E! x  e.  A  E! y  e.  B  ( E! x  e.  A  ph 
/\  E. y  e.  B  ph ) )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2reu8
StepHypRef Expression
1 2reu2 27832 . . 3  |-  ( E! x  e.  A  E. y  e.  B  ph  ->  ( E! y  e.  B  E! x  e.  A  ph  <->  E! y  e.  B  E. x  e.  A  ph )
)
21pm5.32i 619 . 2  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E! x  e.  A  ph )  <->  ( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph ) )
3 nfcv 2540 . . . . 5  |-  F/_ x B
4 nfreu1 2838 . . . . 5  |-  F/ x E! x  e.  A  ph
53, 4nfreu 2842 . . . 4  |-  F/ x E! y  e.  B  E! x  e.  A  ph
65reuan 27825 . . 3  |-  ( E! x  e.  A  ( E! y  e.  B  E! x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  ( E! y  e.  B  E! x  e.  A  ph  /\  E! x  e.  A  E. y  e.  B  ph )
)
7 ancom 438 . . . . . 6  |-  ( ( E! x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  ( E. y  e.  B  ph  /\  E! x  e.  A  ph )
)
87reubii 2854 . . . . 5  |-  ( E! y  e.  B  ( E! x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  E! y  e.  B  ( E. y  e.  B  ph 
/\  E! x  e.  A  ph ) )
9 nfre1 2722 . . . . . 6  |-  F/ y E. y  e.  B  ph
109reuan 27825 . . . . 5  |-  ( E! y  e.  B  ( E. y  e.  B  ph 
/\  E! x  e.  A  ph )  <->  ( E. y  e.  B  ph  /\  E! y  e.  B  E! x  e.  A  ph ) )
11 ancom 438 . . . . 5  |-  ( ( E. y  e.  B  ph 
/\  E! y  e.  B  E! x  e.  A  ph )  <->  ( E! y  e.  B  E! x  e.  A  ph  /\  E. y  e.  B  ph ) )
128, 10, 113bitri 263 . . . 4  |-  ( E! y  e.  B  ( E! x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  ( E! y  e.  B  E! x  e.  A  ph  /\  E. y  e.  B  ph )
)
1312reubii 2854 . . 3  |-  ( E! x  e.  A  E! y  e.  B  ( E! x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  E! x  e.  A  ( E! y  e.  B  E! x  e.  A  ph 
/\  E. y  e.  B  ph ) )
14 ancom 438 . . 3  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E! x  e.  A  ph )  <->  ( E! y  e.  B  E! x  e.  A  ph  /\  E! x  e.  A  E. y  e.  B  ph ) )
156, 13, 143bitr4ri 270 . 2  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E! x  e.  A  ph )  <->  E! x  e.  A  E! y  e.  B  ( E! x  e.  A  ph  /\  E. y  e.  B  ph ) )
16 2reu7 27836 . 2  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  <->  E! x  e.  A  E! y  e.  B  ( E. x  e.  A  ph  /\  E. y  e.  B  ph ) )
172, 15, 163bitr3ri 268 1  |-  ( E! x  e.  A  E! y  e.  B  ( E. x  e.  A  ph 
/\  E. y  e.  B  ph )  <->  E! x  e.  A  E! y  e.  B  ( E! x  e.  A  ph 
/\  E. y  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   E.wrex 2667   E!wreu 2668
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674
  Copyright terms: Public domain W3C validator