MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem3 Structured version   Visualization version   Unicode version

Theorem 2reu5lem3 3235
Description: Lemma for 2reu5 3236. This lemma is interesting in its own right, showing that existential restriction in the last conjunct (the "at most one" part) is optional; compare rmo2 3342. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem3  |-  ( ( E! x  e.  A  E! y  e.  B  ph 
/\  A. x  e.  A  E* y  e.  B  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z E. w A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Distinct variable groups:    y, w, z, A    x, w, B, z    x, y    ph, w, z
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem 2reu5lem3
StepHypRef Expression
1 2reu5lem1 3233 . . 3  |-  ( E! x  e.  A  E! y  e.  B  ph  <->  E! x E! y ( x  e.  A  /\  y  e.  B  /\  ph )
)
2 2reu5lem2 3234 . . 3  |-  ( A. x  e.  A  E* y  e.  B  ph  <->  A. x E* y ( x  e.  A  /\  y  e.  B  /\  ph )
)
31, 2anbi12i 711 . 2  |-  ( ( E! x  e.  A  E! y  e.  B  ph 
/\  A. x  e.  A  E* y  e.  B  ph )  <->  ( E! x E! y ( x  e.  A  /\  y  e.  B  /\  ph )  /\  A. x E* y
( x  e.  A  /\  y  e.  B  /\  ph ) ) )
4 2eu5 2406 . 2  |-  ( ( E! x E! y ( x  e.  A  /\  y  e.  B  /\  ph )  /\  A. x E* y ( x  e.  A  /\  y  e.  B  /\  ph )
)  <->  ( E. x E. y ( x  e.  A  /\  y  e.  B  /\  ph )  /\  E. z E. w A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  (
x  =  z  /\  y  =  w )
) ) )
5 3anass 1011 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B  /\  ph )  <->  ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
65exbii 1726 . . . . . 6  |-  ( E. y ( x  e.  A  /\  y  e.  B  /\  ph )  <->  E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) ) )
7 19.42v 1842 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  ph ) ) )
8 df-rex 2762 . . . . . . . 8  |-  ( E. y  e.  B  ph  <->  E. y ( y  e.  B  /\  ph )
)
98bicomi 207 . . . . . . 7  |-  ( E. y ( y  e.  B  /\  ph )  <->  E. y  e.  B  ph )
109anbi2i 708 . . . . . 6  |-  ( ( x  e.  A  /\  E. y ( y  e.  B  /\  ph )
)  <->  ( x  e.  A  /\  E. y  e.  B  ph ) )
116, 7, 103bitri 279 . . . . 5  |-  ( E. y ( x  e.  A  /\  y  e.  B  /\  ph )  <->  ( x  e.  A  /\  E. y  e.  B  ph ) )
1211exbii 1726 . . . 4  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B  /\  ph )  <->  E. x ( x  e.  A  /\  E. y  e.  B  ph )
)
13 df-rex 2762 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x
( x  e.  A  /\  E. y  e.  B  ph ) )
1412, 13bitr4i 260 . . 3  |-  ( E. x E. y ( x  e.  A  /\  y  e.  B  /\  ph )  <->  E. x  e.  A  E. y  e.  B  ph )
15 3anan12 1020 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B  /\  ph )  <->  ( y  e.  B  /\  ( x  e.  A  /\  ph ) ) )
1615imbi1i 332 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  (
x  =  z  /\  y  =  w )
)  <->  ( ( y  e.  B  /\  (
x  e.  A  /\  ph ) )  ->  (
x  =  z  /\  y  =  w )
) )
17 impexp 453 . . . . . . . . . 10  |-  ( ( ( y  e.  B  /\  ( x  e.  A  /\  ph ) )  -> 
( x  =  z  /\  y  =  w ) )  <->  ( y  e.  B  ->  ( ( x  e.  A  /\  ph )  ->  ( x  =  z  /\  y  =  w ) ) ) )
18 impexp 453 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  ph )  ->  (
x  =  z  /\  y  =  w )
)  <->  ( x  e.  A  ->  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
1918imbi2i 319 . . . . . . . . . 10  |-  ( ( y  e.  B  -> 
( ( x  e.  A  /\  ph )  ->  ( x  =  z  /\  y  =  w ) ) )  <->  ( y  e.  B  ->  ( x  e.  A  ->  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
2016, 17, 193bitri 279 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  (
x  =  z  /\  y  =  w )
)  <->  ( y  e.  B  ->  ( x  e.  A  ->  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
2120albii 1699 . . . . . . . 8  |-  ( A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  A. y
( y  e.  B  ->  ( x  e.  A  ->  ( ph  ->  (
x  =  z  /\  y  =  w )
) ) ) )
22 df-ral 2761 . . . . . . . 8  |-  ( A. y  e.  B  (
x  e.  A  -> 
( ph  ->  ( x  =  z  /\  y  =  w ) ) )  <->  A. y ( y  e.  B  ->  ( x  e.  A  ->  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
23 r19.21v 2803 . . . . . . . 8  |-  ( A. y  e.  B  (
x  e.  A  -> 
( ph  ->  ( x  =  z  /\  y  =  w ) ) )  <-> 
( x  e.  A  ->  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
2421, 22, 233bitr2i 281 . . . . . . 7  |-  ( A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  ( x  e.  A  ->  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
2524albii 1699 . . . . . 6  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( x  e.  A  ->  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
26 df-ral 2761 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( x  e.  A  ->  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
2725, 26bitr4i 260 . . . . 5  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) )
2827exbii 1726 . . . 4  |-  ( E. w A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  E. w A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) )
2928exbii 1726 . . 3  |-  ( E. z E. w A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) )  <->  E. z E. w A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w )
) )
3014, 29anbi12i 711 . 2  |-  ( ( E. x E. y
( x  e.  A  /\  y  e.  B  /\  ph )  /\  E. z E. w A. x A. y ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  ( x  =  z  /\  y  =  w ) ) )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z E. w A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
313, 4, 303bitri 279 1  |-  ( ( E! x  e.  A  E! y  e.  B  ph 
/\  A. x  e.  A  E* y  e.  B  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z E. w A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450   E.wex 1671    e. wcel 1904   E!weu 2319   E*wmo 2320   A.wral 2756   E.wrex 2757   E!wreu 2758   E*wrmo 2759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-eu 2323  df-mo 2324  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764
This theorem is referenced by:  2reu5  3236
  Copyright terms: Public domain W3C validator