Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem2 Structured version   Unicode version

Theorem 2reu5lem2 3305
 Description: Lemma for 2reu5 3307. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem 2reu5lem2
StepHypRef Expression
1 df-rmo 2817 . . 3
21ralbii 2890 . 2
3 df-ral 2814 . . 3
4 moanimv 2351 . . . . . 6
54bicomi 202 . . . . 5
6 3anass 972 . . . . . . 7
76bicomi 202 . . . . . 6
87mobii 2296 . . . . 5
95, 8bitri 249 . . . 4
109albii 1615 . . 3
113, 10bitri 249 . 2
122, 11bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   w3a 968  wal 1372   wcel 1762  wmo 2271  wral 2809  wrmo 2812 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-eu 2274  df-mo 2275  df-ral 2814  df-rmo 2817 This theorem is referenced by:  2reu5lem3  3306
 Copyright terms: Public domain W3C validator