Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu4a Structured version   Unicode version

Theorem 2reu4a 30018
Description: Definition of double restricted existential uniqueness ("exactly one  x and exactly one  y"), analogous to 2eu4 2368 with the additional requirement that the restricting classes are not empty (which is not necessary as shown in 2reu4 30019). (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
2reu4a  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph 
/\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
Distinct variable groups:    z, w, ph    x, w, y, A, z   
w, B, x, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2reu4a
StepHypRef Expression
1 reu3 3154 . . . 4  |-  ( E! x  e.  A  E. y  e.  B  ph  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
) ) )
2 reu3 3154 . . . 4  |-  ( E! y  e.  B  E. x  e.  A  ph  <->  ( E. y  e.  B  E. x  e.  A  ph  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) )
31, 2anbi12i 697 . . 3  |-  ( ( E! x  e.  A  E. y  e.  B  ph 
/\  E! y  e.  B  E. x  e.  A  ph )  <->  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
) )  /\  ( E. y  e.  B  E. x  e.  A  ph 
/\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) ) )
43a1i 11 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph )  <->  ( ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
) )  /\  ( E. y  e.  B  E. x  e.  A  ph 
/\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) ) ) )
5 an4 820 . . 3  |-  ( ( ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
) )  /\  ( E. y  e.  B  E. x  e.  A  ph 
/\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) )  <->  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. y  e.  B  E. x  e.  A  ph )  /\  ( E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
65a1i 11 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
) )  /\  ( E. y  e.  B  E. x  e.  A  ph 
/\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) )  <->  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. y  e.  B  E. x  e.  A  ph )  /\  ( E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) ) )
7 rexcom 2887 . . . . . 6  |-  ( E. y  e.  B  E. x  e.  A  ph  <->  E. x  e.  A  E. y  e.  B  ph )
87anbi2i 694 . . . . 5  |-  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. x  e.  A  E. y  e.  B  ph )
)
9 anidm 644 . . . . 5  |-  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. x  e.  A  E. y  e.  B  ph )  <->  E. x  e.  A  E. y  e.  B  ph )
108, 9bitri 249 . . . 4  |-  ( ( E. x  e.  A  E. y  e.  B  ph 
/\  E. y  e.  B  E. x  e.  A  ph )  <->  E. x  e.  A  E. y  e.  B  ph )
1110a1i 11 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E. x  e.  A  E. y  e.  B  ph  /\  E. y  e.  B  E. x  e.  A  ph )  <->  E. x  e.  A  E. y  e.  B  ph )
)
12 r19.26 2854 . . . . . . . 8  |-  ( A. x  e.  A  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) )  <->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
13 nfra1 2771 . . . . . . . . . . . . . 14  |-  F/ x A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w )
1413r19.3rz 3776 . . . . . . . . . . . . 13  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
1514bicomd 201 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
1615adantr 465 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
1716adantr 465 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
1817anbi2d 703 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) )  <->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
19 jcab 858 . . . . . . . . . . . . . 14  |-  ( (
ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
2019ralbii 2744 . . . . . . . . . . . . 13  |-  ( A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. y  e.  B  ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
21 r19.26 2854 . . . . . . . . . . . . 13  |-  ( A. y  e.  B  (
( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  ( ph  ->  y  =  w ) ) )
2220, 21bitri 249 . . . . . . . . . . . 12  |-  ( A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  ( ph  ->  y  =  w ) ) )
2322ralbii 2744 . . . . . . . . . . 11  |-  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x  e.  A  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  ( ph  ->  y  =  w ) ) )
24 r19.26 2854 . . . . . . . . . . 11  |-  ( A. x  e.  A  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  ( ph  ->  y  =  w ) )  <->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
2523, 24bitri 249 . . . . . . . . . 10  |-  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
2625a1i 11 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
2718, 26bitr4d 256 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( ( A. x  e.  A  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
2812, 27syl5rbb 258 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x  e.  A  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
29 r19.26 2854 . . . . . . . . 9  |-  ( A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  ( A. y  e.  B  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  A. x  e.  A  ( ph  ->  y  =  w ) ) )
30 nfra1 2771 . . . . . . . . . . . . 13  |-  F/ y A. y  e.  B  ( ph  ->  x  =  z )
3130r19.3rz 3776 . . . . . . . . . . . 12  |-  ( B  =/=  (/)  ->  ( A. y  e.  B  ( ph  ->  x  =  z )  <->  A. y  e.  B  A. y  e.  B  ( ph  ->  x  =  z ) ) )
3231ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. y  e.  B  ( ph  ->  x  =  z )  <->  A. y  e.  B  A. y  e.  B  ( ph  ->  x  =  z ) ) )
3332bicomd 201 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. y  e.  B  A. y  e.  B  ( ph  ->  x  =  z )  <->  A. y  e.  B  ( ph  ->  x  =  z ) ) )
34 ralcom 2886 . . . . . . . . . . 11  |-  ( A. y  e.  B  A. x  e.  A  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) )
3534a1i 11 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. y  e.  B  A. x  e.  A  ( ph  ->  y  =  w )  <->  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) )
3633, 35anbi12d 710 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( ( A. y  e.  B  A. y  e.  B  ( ph  ->  x  =  z )  /\  A. y  e.  B  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
3729, 36syl5bb 257 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
3837ralbidv 2740 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  A. x  e.  A  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  A. y  e.  B  ( ph  ->  y  =  w ) ) ) )
3928, 38bitr4d 256 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x  e.  A  A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) ) ) )
40 r19.23v 2838 . . . . . . . . 9  |-  ( A. y  e.  B  ( ph  ->  x  =  z )  <->  ( E. y  e.  B  ph  ->  x  =  z ) )
41 r19.23v 2838 . . . . . . . . 9  |-  ( A. x  e.  A  ( ph  ->  y  =  w )  <->  ( E. x  e.  A  ph  ->  y  =  w ) )
4240, 41anbi12i 697 . . . . . . . 8  |-  ( ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  ( ( E. y  e.  B  ph 
->  x  =  z
)  /\  ( E. x  e.  A  ph  ->  y  =  w ) ) )
43422ralbii 2746 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  A. x  e.  A  A. y  e.  B  ( ( E. y  e.  B  ph 
->  x  =  z
)  /\  ( E. x  e.  A  ph  ->  y  =  w ) ) )
4443a1i 11 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( A. y  e.  B  ( ph  ->  x  =  z )  /\  A. x  e.  A  ( ph  ->  y  =  w ) )  <->  A. x  e.  A  A. y  e.  B  ( ( E. y  e.  B  ph 
->  x  =  z
)  /\  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
45 df-ne 2613 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
4645biimpi 194 . . . . . . . . . . 11  |-  ( A  =/=  (/)  ->  -.  A  =  (/) )
47 df-ne 2613 . . . . . . . . . . . 12  |-  ( B  =/=  (/)  <->  -.  B  =  (/) )
4847biimpi 194 . . . . . . . . . . 11  |-  ( B  =/=  (/)  ->  -.  B  =  (/) )
4946, 48anim12i 566 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) )
5049olcd 393 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( A  =  (/)  /\  B  =  (/) )  \/  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
51 dfbi3 888 . . . . . . . . 9  |-  ( ( A  =  (/)  <->  B  =  (/) )  <->  ( ( A  =  (/)  /\  B  =  (/) )  \/  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
5250, 51sylibr 212 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( A  =  (/)  <->  B  =  (/) ) )
53 nfre1 2777 . . . . . . . . . 10  |-  F/ y E. y  e.  B  ph
54 nfv 1673 . . . . . . . . . 10  |-  F/ y  x  =  z
5553, 54nfim 1853 . . . . . . . . 9  |-  F/ y ( E. y  e.  B  ph  ->  x  =  z )
56 nfre1 2777 . . . . . . . . . 10  |-  F/ x E. x  e.  A  ph
57 nfv 1673 . . . . . . . . . 10  |-  F/ x  y  =  w
5856, 57nfim 1853 . . . . . . . . 9  |-  F/ x
( E. x  e.  A  ph  ->  y  =  w )
5955, 58raaan2 30004 . . . . . . . 8  |-  ( ( A  =  (/)  <->  B  =  (/) )  ->  ( A. x  e.  A  A. y  e.  B  (
( E. y  e.  B  ph  ->  x  =  z )  /\  ( E. x  e.  A  ph 
->  y  =  w
) )  <->  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
6052, 59syl 16 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( A. x  e.  A  A. y  e.  B  ( ( E. y  e.  B  ph  ->  x  =  z )  /\  ( E. x  e.  A  ph 
->  y  =  w
) )  <->  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
6160adantr 465 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  (
( E. y  e.  B  ph  ->  x  =  z )  /\  ( E. x  e.  A  ph 
->  y  =  w
) )  <->  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
6239, 44, 613bitrd 279 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  (
z  e.  A  /\  w  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
63622rexbidva 2761 . . . 4  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ( E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  E. z  e.  A  E. w  e.  B  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) ) ) )
64 reeanv 2893 . . . 4  |-  ( E. z  e.  A  E. w  e.  B  ( A. x  e.  A  ( E. y  e.  B  ph 
->  x  =  z
)  /\  A. y  e.  B  ( E. x  e.  A  ph  ->  y  =  w ) )  <-> 
( E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph  ->  x  =  z )  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) )
6563, 64syl6rbb 262 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph  ->  x  =  z )  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) )  <->  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
6611, 65anbi12d 710 . 2  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( ( E. x  e.  A  E. y  e.  B  ph  /\  E. y  e.  B  E. x  e.  A  ph )  /\  ( E. z  e.  A  A. x  e.  A  ( E. y  e.  B  ph  ->  x  =  z )  /\  E. w  e.  B  A. y  e.  B  ( E. x  e.  A  ph 
->  y  =  w
) ) )  <->  ( E. x  e.  A  E. y  e.  B  ph  /\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
674, 6, 663bitrd 279 1  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( E! x  e.  A  E. y  e.  B  ph  /\  E! y  e.  B  E. x  e.  A  ph )  <->  ( E. x  e.  A  E. y  e.  B  ph 
/\  E. z  e.  A  E. w  e.  B  A. x  e.  A  A. y  e.  B  ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   E!wreu 2722   (/)c0 3642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-v 2979  df-dif 3336  df-nul 3643
This theorem is referenced by:  2reu4  30019
  Copyright terms: Public domain W3C validator