MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbidvaOLD Structured version   Unicode version

Theorem 2ralbidvaOLD 2875
Description: Obsolete proof of 2ralbidva 2874 as of 9-Dec-2019. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
2ralbidva.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  <->  ch )
)
Assertion
Ref Expression
2ralbidvaOLD  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Distinct variable groups:    x, y, ph    y, A
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x)    B( x, y)

Proof of Theorem 2ralbidvaOLD
StepHypRef Expression
1 nfv 1754 . 2  |-  F/ x ph
2 nfv 1754 . 2  |-  F/ y
ph
3 2ralbidva.1 . 2  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( ps  <->  ch )
)
41, 2, 32ralbida 2873 1  |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1870   A.wral 2782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-12 1907
This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-ral 2787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator