Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbidvaOLD Structured version   Unicode version

Theorem 2ralbidvaOLD 2875
 Description: Obsolete proof of 2ralbidva 2874 as of 9-Dec-2019. (Contributed by NM, 4-Mar-1997.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
2ralbidva.1
Assertion
Ref Expression
2ralbidvaOLD
Distinct variable groups:   ,,   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem 2ralbidvaOLD
StepHypRef Expression
1 nfv 1754 . 2
2 nfv 1754 . 2
3 2ralbidva.1 . 2
41, 2, 32ralbida 2873 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   wcel 1870  wral 2782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-12 1907 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-ral 2787 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator