Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbida Structured version   Unicode version

Theorem 2ralbida 2873
 Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
Hypotheses
Ref Expression
2ralbida.1
2ralbida.2
2ralbida.3
Assertion
Ref Expression
2ralbida
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   (,)   ()   (,)

Proof of Theorem 2ralbida
StepHypRef Expression
1 2ralbida.1 . 2
2 2ralbida.2 . . . 4
3 nfv 1754 . . . 4
42, 3nfan 1986 . . 3
5 2ralbida.3 . . . 4
65anassrs 652 . . 3
74, 6ralbida 2865 . 2
81, 7ralbida 2865 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370  wnf 1663   wcel 1870  wral 2782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-12 1907 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-ral 2787 This theorem is referenced by:  2ralbidvaOLD  2875
 Copyright terms: Public domain W3C validator