Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polssN Structured version   Unicode version

Theorem 2polssN 33449
Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polss.a  |-  A  =  ( Atoms `  K )
2polss.p  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
2polssN  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )

Proof of Theorem 2polssN
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 hlclat 32893 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
21ad3antrrr 734 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A )  /\  p  e.  X )  ->  K  e.  CLat )
3 simpr 462 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A )  /\  p  e.  X )  ->  p  e.  X )
4 simpllr 767 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A )  /\  p  e.  X )  ->  X  C_  A )
5 eqid 2422 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 2polss.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atssbase 32825 . . . . . 6  |-  A  C_  ( Base `  K )
84, 7syl6ss 3476 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A )  /\  p  e.  X )  ->  X  C_  ( Base `  K
) )
9 eqid 2422 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
10 eqid 2422 . . . . . 6  |-  ( lub `  K )  =  ( lub `  K )
115, 9, 10lubel 16367 . . . . 5  |-  ( ( K  e.  CLat  /\  p  e.  X  /\  X  C_  ( Base `  K )
)  ->  p ( le `  K ) ( ( lub `  K
) `  X )
)
122, 3, 8, 11syl3anc 1264 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A )  /\  p  e.  X )  ->  p
( le `  K
) ( ( lub `  K ) `  X
) )
1312ex 435 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  p  e.  A
)  ->  ( p  e.  X  ->  p ( le `  K ) ( ( lub `  K
) `  X )
) )
1413ss2rabdv 3542 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  { p  e.  A  |  p  e.  X }  C_  { p  e.  A  |  p ( le `  K ) ( ( lub `  K
) `  X ) } )
15 dfin5 3444 . . 3  |-  ( A  i^i  X )  =  { p  e.  A  |  p  e.  X }
16 sseqin2 3681 . . . . 5  |-  ( X 
C_  A  <->  ( A  i^i  X )  =  X )
1716biimpi 197 . . . 4  |-  ( X 
C_  A  ->  ( A  i^i  X )  =  X )
1817adantl 467 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( A  i^i  X
)  =  X )
1915, 18syl5reqr 2478 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  =  { p  e.  A  |  p  e.  X } )
20 eqid 2422 . . . 4  |-  ( pmap `  K )  =  (
pmap `  K )
21 2polss.p . . . 4  |-  ._|_  =  ( _|_P `  K
)
2210, 6, 20, 212polvalN 33448 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  ( ( pmap `  K
) `  ( ( lub `  K ) `  X ) ) )
23 sstr 3472 . . . . . 6  |-  ( ( X  C_  A  /\  A  C_  ( Base `  K
) )  ->  X  C_  ( Base `  K
) )
247, 23mpan2 675 . . . . 5  |-  ( X 
C_  A  ->  X  C_  ( Base `  K
) )
255, 10clatlubcl 16357 . . . . 5  |-  ( ( K  e.  CLat  /\  X  C_  ( Base `  K
) )  ->  (
( lub `  K
) `  X )  e.  ( Base `  K
) )
261, 24, 25syl2an 479 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( lub `  K
) `  X )  e.  ( Base `  K
) )
275, 9, 6, 20pmapval 33291 . . . 4  |-  ( ( K  e.  HL  /\  ( ( lub `  K
) `  X )  e.  ( Base `  K
) )  ->  (
( pmap `  K ) `  ( ( lub `  K
) `  X )
)  =  { p  e.  A  |  p
( le `  K
) ( ( lub `  K ) `  X
) } )
2826, 27syldan 472 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( pmap `  K
) `  ( ( lub `  K ) `  X ) )  =  { p  e.  A  |  p ( le `  K ) ( ( lub `  K ) `
 X ) } )
2922, 28eqtrd 2463 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  { p  e.  A  |  p ( le `  K ) ( ( lub `  K ) `
 X ) } )
3014, 19, 293sstr4d 3507 1  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   {crab 2775    i^i cin 3435    C_ wss 3436   class class class wbr 4423   ` cfv 5601   Basecbs 15120   lecple 15196   lubclub 16186   CLatccla 16352   Atomscatm 32798   HLchlt 32885   pmapcpmap 33031   _|_PcpolN 33436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-undef 7031  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-pmap 33038  df-polarityN 33437
This theorem is referenced by:  polcon2N  33453  pclss2polN  33455  sspmaplubN  33459  paddunN  33461  pnonsingN  33467  osumcllem1N  33490  osumcllem11N  33500  pexmidN  33503
  Copyright terms: Public domain W3C validator