![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2on0 | Structured version Visualization version Unicode version |
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.) |
Ref | Expression |
---|---|
2on0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 7180 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | nsuceq0 5502 |
. 2
![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqnetri 2693 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-10 1914 ax-11 1919 ax-12 1932 ax-13 2090 ax-ext 2430 ax-nul 4533 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-tru 1446 df-ex 1663 df-nf 1667 df-sb 1797 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2580 df-ne 2623 df-v 3046 df-dif 3406 df-un 3408 df-nul 3731 df-sn 3968 df-suc 5428 df-2o 7180 |
This theorem is referenced by: snnen2o 7758 pmtrfmvdn0 17096 pmtrsn 17153 efgrcl 17358 sltval2 30536 sltintdifex 30543 onint1 31102 1oequni2o 31764 finxpreclem4 31779 finxp3o 31785 frlmpwfi 35950 |
Copyright terms: Public domain | W3C validator |