MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2on0 Structured version   Unicode version

Theorem 2on0 7057
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 7049 . 2  |-  2o  =  suc  1o
2 nsuceq0 4872 . 2  |-  suc  1o  =/=  (/)
31, 2eqnetri 2678 1  |-  2o  =/=  (/)
Colors of variables: wff setvar class
Syntax hints:    =/= wne 2577   (/)c0 3711   suc csuc 4794   1oc1o 7041   2oc2o 7042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-nul 4496
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-v 3036  df-dif 3392  df-un 3394  df-nul 3712  df-sn 3945  df-suc 4798  df-2o 7049
This theorem is referenced by:  snnen2o  7625  pmtrfmvdn0  16604  pmtrsn  16661  efgrcl  16850  sltval2  29581  sltintdifex  29588  onint1  30067  frlmpwfi  31214
  Copyright terms: Public domain W3C validator