MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2on0 Structured version   Unicode version

Theorem 2on0 6934
Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011.)
Assertion
Ref Expression
2on0  |-  2o  =/=  (/)

Proof of Theorem 2on0
StepHypRef Expression
1 df-2o 6926 . 2  |-  2o  =  suc  1o
2 nsuceq0 4804 . 2  |-  suc  1o  =/=  (/)
31, 2eqnetri 2630 1  |-  2o  =/=  (/)
Colors of variables: wff setvar class
Syntax hints:    =/= wne 2611   (/)c0 3642   suc csuc 4726   1oc1o 6918   2oc2o 6919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4426
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-v 2979  df-dif 3336  df-un 3338  df-nul 3643  df-sn 3883  df-suc 4730  df-2o 6926
This theorem is referenced by:  pmtrfmvdn0  15973  efgrcl  16217  sltval2  27802  sltintdifex  27809  onint1  28300  frlmpwfi  29458  snnen2o  30743  pmtrsn  30775
  Copyright terms: Public domain W3C validator