Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Structured version   Unicode version

Theorem 2nn0ind 29426
Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1  |-  ps
2nn0ind.2  |-  ch
2nn0ind.3  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
2nn0ind.4  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2nn0ind.5  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
2nn0ind.6  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
2nn0ind.7  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
2nn0ind.8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
2nn0ind.9  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
Assertion
Ref Expression
2nn0ind  |-  ( A  e.  NN0  ->  rh )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    et, x    rh, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    rh( y)    A( y)

Proof of Theorem 2nn0ind
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 10722 . . . 4  |-  ( A  e.  NN0  ->  ( A  +  1 )  e.  NN )
2 oveq1 6199 . . . . . . 7  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
3 dfsbcq 3288 . . . . . . 7  |-  ( ( a  -  1 )  =  ( 1  -  1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( 1  -  1 )  /  x ]. ph ) )
42, 3syl 16 . . . . . 6  |-  ( a  =  1  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( 1  -  1 )  /  x ]. ph ) )
5 dfsbcq 3288 . . . . . 6  |-  ( a  =  1  ->  ( [. a  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
64, 5anbi12d 710 . . . . 5  |-  ( a  =  1  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( 1  -  1 )  /  x ]. ph  /\  [. 1  /  x ]. ph )
) )
7 oveq1 6199 . . . . . . 7  |-  ( a  =  y  ->  (
a  -  1 )  =  ( y  - 
1 ) )
8 dfsbcq 3288 . . . . . . 7  |-  ( ( a  -  1 )  =  ( y  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( y  -  1 )  /  x ]. ph ) )
97, 8syl 16 . . . . . 6  |-  ( a  =  y  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( y  -  1 )  /  x ]. ph ) )
10 dfsbcq 3288 . . . . . 6  |-  ( a  =  y  ->  ( [. a  /  x ]. ph  <->  [. y  /  x ]. ph ) )
119, 10anbi12d 710 . . . . 5  |-  ( a  =  y  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
) )
12 oveq1 6199 . . . . . . 7  |-  ( a  =  ( y  +  1 )  ->  (
a  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
13 dfsbcq 3288 . . . . . . 7  |-  ( ( a  -  1 )  =  ( ( y  +  1 )  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph ) )
1412, 13syl 16 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph ) )
15 dfsbcq 3288 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. a  /  x ]. ph  <->  [. ( y  +  1 )  /  x ]. ph ) )
1614, 15anbi12d 710 . . . . 5  |-  ( a  =  ( y  +  1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( y  +  1 )  - 
1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
17 oveq1 6199 . . . . . . 7  |-  ( a  =  ( A  + 
1 )  ->  (
a  -  1 )  =  ( ( A  +  1 )  - 
1 ) )
18 dfsbcq 3288 . . . . . . 7  |-  ( ( a  -  1 )  =  ( ( A  +  1 )  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph ) )
1917, 18syl 16 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph ) )
20 dfsbcq 3288 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. a  /  x ]. ph  <->  [. ( A  + 
1 )  /  x ]. ph ) )
2119, 20anbi12d 710 . . . . 5  |-  ( a  =  ( A  + 
1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
) )
22 2nn0ind.1 . . . . . . 7  |-  ps
23 ovex 6217 . . . . . . . 8  |-  ( 1  -  1 )  e. 
_V
24 1m1e0 10493 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
2524eqeq2i 2469 . . . . . . . . 9  |-  ( x  =  ( 1  -  1 )  <->  x  = 
0 )
26 2nn0ind.4 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2725, 26sylbi 195 . . . . . . . 8  |-  ( x  =  ( 1  -  1 )  ->  ( ph 
<->  ps ) )
2823, 27sbcie 3321 . . . . . . 7  |-  ( [. ( 1  -  1 )  /  x ]. ph  <->  ps )
2922, 28mpbir 209 . . . . . 6  |-  [. (
1  -  1 )  /  x ]. ph
30 2nn0ind.2 . . . . . . 7  |-  ch
31 1ex 9484 . . . . . . . 8  |-  1  e.  _V
32 2nn0ind.5 . . . . . . . 8  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
3331, 32sbcie 3321 . . . . . . 7  |-  ( [.
1  /  x ]. ph  <->  ch )
3430, 33mpbir 209 . . . . . 6  |-  [. 1  /  x ]. ph
3529, 34pm3.2i 455 . . . . 5  |-  ( [. ( 1  -  1 )  /  x ]. ph 
/\  [. 1  /  x ]. ph )
36 simprr 756 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. y  /  x ]. ph )
37 nncn 10433 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
38 ax-1cn 9443 . . . . . . . . . . 11  |-  1  e.  CC
39 pncan 9719 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
4037, 38, 39sylancl 662 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
4140adantr 465 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( (
y  +  1 )  -  1 )  =  y )
42 dfsbcq 3288 . . . . . . . . 9  |-  ( ( ( y  +  1 )  -  1 )  =  y  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  <->  [. y  /  x ]. ph ) )
4341, 42syl 16 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  <->  [. y  /  x ]. ph ) )
4436, 43mpbird 232 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph )
45 2nn0ind.3 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
46 ovex 6217 . . . . . . . . . . 11  |-  ( y  -  1 )  e. 
_V
47 2nn0ind.6 . . . . . . . . . . 11  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
4846, 47sbcie 3321 . . . . . . . . . 10  |-  ( [. ( y  -  1 )  /  x ]. ph  <->  th )
49 vex 3073 . . . . . . . . . . 11  |-  y  e. 
_V
50 2nn0ind.7 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
5149, 50sbcie 3321 . . . . . . . . . 10  |-  ( [. y  /  x ]. ph  <->  ta )
5248, 51anbi12i 697 . . . . . . . . 9  |-  ( (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  <->  ( th  /\  ta )
)
53 ovex 6217 . . . . . . . . . 10  |-  ( y  +  1 )  e. 
_V
54 2nn0ind.8 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
5553, 54sbcie 3321 . . . . . . . . 9  |-  ( [. ( y  +  1 )  /  x ]. ph  <->  et )
5645, 52, 553imtr4g 270 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  [. ( y  +  1 )  /  x ]. ph ) )
5756imp 429 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( y  +  1 )  /  x ]. ph )
5844, 57jca 532 . . . . . 6  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph 
/\  [. ( y  +  1 )  /  x ]. ph ) )
5958ex 434 . . . . 5  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
606, 11, 16, 21, 35, 59nnind 10443 . . . 4  |-  ( ( A  +  1 )  e.  NN  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
611, 60syl 16 . . 3  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
62 nn0cn 10692 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  CC )
63 pncan 9719 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
6462, 38, 63sylancl 662 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( A  +  1 )  -  1 )  =  A )
65 dfsbcq 3288 . . . . . 6  |-  ( ( ( A  +  1 )  -  1 )  =  A  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
6664, 65syl 16 . . . . 5  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
6766biimpa 484 . . . 4  |-  ( ( A  e.  NN0  /\  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph )  ->  [. A  /  x ]. ph )
6867adantrr 716 . . 3  |-  ( ( A  e.  NN0  /\  ( [. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
)  ->  [. A  /  x ]. ph )
6961, 68mpdan 668 . 2  |-  ( A  e.  NN0  ->  [. A  /  x ]. ph )
70 2nn0ind.9 . . 3  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
7170sbcieg 3319 . 2  |-  ( A  e.  NN0  ->  ( [. A  /  x ]. ph  <->  rh )
)
7269, 71mpbid 210 1  |-  ( A  e.  NN0  ->  rh )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   [.wsbc 3286  (class class class)co 6192   CCcc 9383   0cc0 9385   1c1 9386    + caddc 9388    - cmin 9698   NNcn 10425   NN0cn0 10682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-recs 6934  df-rdg 6968  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-ltxr 9526  df-sub 9700  df-nn 10426  df-n0 10683
This theorem is referenced by:  jm2.18  29477  jm2.15nn0  29492  jm2.16nn0  29493
  Copyright terms: Public domain W3C validator