MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nexaln Structured version   Unicode version

Theorem 2nexaln 1696
Description: Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2nexaln  |-  ( -. 
E. x E. y ph 
<-> 
A. x A. y  -.  ph )

Proof of Theorem 2nexaln
StepHypRef Expression
1 2exnaln 1695 . . 3  |-  ( E. x E. y ph  <->  -. 
A. x A. y  -.  ph )
21bicomi 205 . 2  |-  ( -. 
A. x A. y  -.  ph  <->  E. x E. y ph )
32con1bii 332 1  |-  ( -. 
E. x E. y ph 
<-> 
A. x A. y  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187   A.wal 1435   E.wex 1657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676
This theorem depends on definitions:  df-bi 188  df-ex 1658
This theorem is referenced by:  2mo  2350  2spotdisj  25787  pm11.63  36715  fun2dmnopgexmpl  38891
  Copyright terms: Public domain W3C validator