Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndmbfm Structured version   Unicode version

Theorem 2ndmbfm 28922
Description: The second projection map is measurable with regard to the product sigma algebra (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
1stmbfm.2  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
Assertion
Ref Expression
2ndmbfm  |-  ( ph  ->  ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM T ) )

Proof of Theorem 2ndmbfm
Dummy variables  z 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 6830 . . . 4  |-  ( 2nd  |`  ( U. S  X.  U. T ) ) : ( U. S  X.  U. T ) --> U. T
2 1stmbfm.1 . . . . . 6  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
3 1stmbfm.2 . . . . . 6  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
4 sxuni 28854 . . . . . 6  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( U. S  X.  U. T )  =  U. ( S ×s  T ) )
52, 3, 4syl2anc 665 . . . . 5  |-  ( ph  ->  ( U. S  X.  U. T )  =  U. ( S ×s  T ) )
65feq2d 5733 . . . 4  |-  ( ph  ->  ( ( 2nd  |`  ( U. S  X.  U. T
) ) : ( U. S  X.  U. T ) --> U. T  <->  ( 2nd  |`  ( U. S  X.  U. T ) ) : U. ( S ×s  T ) --> U. T
) )
71, 6mpbii 214 . . 3  |-  ( ph  ->  ( 2nd  |`  ( U. S  X.  U. T
) ) : U. ( S ×s  T ) --> U. T
)
8 unielsiga 28789 . . . . 5  |-  ( T  e.  U. ran sigAlgebra  ->  U. T  e.  T )
93, 8syl 17 . . . 4  |-  ( ph  ->  U. T  e.  T
)
10 sxsiga 28852 . . . . . 6  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  e.  U. ran sigAlgebra )
112, 3, 10syl2anc 665 . . . . 5  |-  ( ph  ->  ( S ×s  T )  e.  U. ran sigAlgebra )
12 unielsiga 28789 . . . . 5  |-  ( ( S ×s  T )  e.  U. ran sigAlgebra 
->  U. ( S ×s  T )  e.  ( S ×s  T ) )
1311, 12syl 17 . . . 4  |-  ( ph  ->  U. ( S ×s  T )  e.  ( S ×s  T ) )
149, 13elmapd 7494 . . 3  |-  ( ph  ->  ( ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( U. T  ^m  U. ( S ×s  T ) )  <->  ( 2nd  |`  ( U. S  X.  U. T ) ) : U. ( S ×s  T ) --> U. T ) )
157, 14mpbird 235 . 2  |-  ( ph  ->  ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( U. T  ^m  U. ( S ×s  T ) ) )
16 sgon 28785 . . . . . . . . . . 11  |-  ( T  e.  U. ran sigAlgebra  ->  T  e.  (sigAlgebra `  U. T ) )
17 sigasspw 28777 . . . . . . . . . . 11  |-  ( T  e.  (sigAlgebra `  U. T )  ->  T  C_  ~P U. T )
18 pwssb 4392 . . . . . . . . . . . 12  |-  ( T 
C_  ~P U. T  <->  A. a  e.  T  a  C_  U. T )
1918biimpi 197 . . . . . . . . . . 11  |-  ( T 
C_  ~P U. T  ->  A. a  e.  T  a  C_  U. T )
203, 16, 17, 194syl 19 . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  T  a  C_  U. T )
2120r19.21bi 2801 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  T )  ->  a  C_ 
U. T )
22 xpss2 4964 . . . . . . . . 9  |-  ( a 
C_  U. T  ->  ( U. S  X.  a
)  C_  ( U. S  X.  U. T ) )
2321, 22syl 17 . . . . . . . 8  |-  ( (
ph  /\  a  e.  T )  ->  ( U. S  X.  a
)  C_  ( U. S  X.  U. T ) )
2423sseld 3469 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  (
z  e.  ( U. S  X.  a )  -> 
z  e.  ( U. S  X.  U. T ) ) )
2524pm4.71rd 639 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  (
z  e.  ( U. S  X.  a )  <->  ( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( U. S  X.  a ) ) ) )
26 ffn 5746 . . . . . . . 8  |-  ( ( 2nd  |`  ( U. S  X.  U. T ) ) : ( U. S  X.  U. T ) --> U. T  ->  ( 2nd  |`  ( U. S  X.  U. T ) )  Fn  ( U. S  X.  U. T ) )
27 elpreima 6017 . . . . . . . 8  |-  ( ( 2nd  |`  ( U. S  X.  U. T ) )  Fn  ( U. S  X.  U. T )  ->  ( z  e.  ( `' ( 2nd  |`  ( U. S  X.  U. T ) ) "
a )  <->  ( z  e.  ( U. S  X.  U. T )  /\  (
( 2nd  |`  ( U. S  X.  U. T ) ) `  z )  e.  a ) ) )
281, 26, 27mp2b 10 . . . . . . 7  |-  ( z  e.  ( `' ( 2nd  |`  ( U. S  X.  U. T ) ) " a )  <-> 
( z  e.  ( U. S  X.  U. T )  /\  (
( 2nd  |`  ( U. S  X.  U. T ) ) `  z )  e.  a ) )
29 fvres 5895 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( 2nd  |`  ( U. S  X.  U. T
) ) `  z
)  =  ( 2nd `  z ) )
3029eleq1d 2498 . . . . . . . . 9  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( ( 2nd  |`  ( U. S  X.  U. T ) ) `  z )  e.  a  <-> 
( 2nd `  z
)  e.  a ) )
31 1st2nd2 6844 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
32 xp1st 6837 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( 1st `  z
)  e.  U. S
)
33 elxp6 6839 . . . . . . . . . . . 12  |-  ( z  e.  ( U. S  X.  a )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  U. S  /\  ( 2nd `  z
)  e.  a ) ) )
34 anass 653 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  U. S )  /\  ( 2nd `  z )  e.  a )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  U. S  /\  ( 2nd `  z
)  e.  a ) ) )
3533, 34bitr4i 255 . . . . . . . . . . 11  |-  ( z  e.  ( U. S  X.  a )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  U. S )  /\  ( 2nd `  z )  e.  a ) )
3635baib 911 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  U. S )  ->  (
z  e.  ( U. S  X.  a )  <->  ( 2nd `  z )  e.  a ) )
3731, 32, 36syl2anc 665 . . . . . . . . 9  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( z  e.  ( U. S  X.  a
)  <->  ( 2nd `  z
)  e.  a ) )
3830, 37bitr4d 259 . . . . . . . 8  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( ( 2nd  |`  ( U. S  X.  U. T ) ) `  z )  e.  a  <-> 
z  e.  ( U. S  X.  a ) ) )
3938pm5.32i 641 . . . . . . 7  |-  ( ( z  e.  ( U. S  X.  U. T )  /\  ( ( 2nd  |`  ( U. S  X.  U. T ) ) `  z )  e.  a )  <->  ( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( U. S  X.  a ) ) )
4028, 39bitri 252 . . . . . 6  |-  ( z  e.  ( `' ( 2nd  |`  ( U. S  X.  U. T ) ) " a )  <-> 
( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( U. S  X.  a ) ) )
4125, 40syl6rbbr 267 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  (
z  e.  ( `' ( 2nd  |`  ( U. S  X.  U. T
) ) " a
)  <->  z  e.  ( U. S  X.  a
) ) )
4241eqrdv 2426 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  ( `' ( 2nd  |`  ( U. S  X.  U. T
) ) " a
)  =  ( U. S  X.  a ) )
432adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  S  e.  U. ran sigAlgebra )
443adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  T  e.  U. ran sigAlgebra )
45 eqid 2429 . . . . . . . 8  |-  U. S  =  U. S
46 issgon 28784 . . . . . . . . 9  |-  ( S  e.  (sigAlgebra `  U. S )  <-> 
( S  e.  U. ran sigAlgebra  /\  U. S  =  U. S ) )
4746biimpri 209 . . . . . . . 8  |-  ( ( S  e.  U. ran sigAlgebra  /\  U. S  =  U. S
)  ->  S  e.  (sigAlgebra `
 U. S ) )
482, 45, 47sylancl 666 . . . . . . 7  |-  ( ph  ->  S  e.  (sigAlgebra `  U. S ) )
49 baselsiga 28776 . . . . . . 7  |-  ( S  e.  (sigAlgebra `  U. S )  ->  U. S  e.  S
)
5048, 49syl 17 . . . . . 6  |-  ( ph  ->  U. S  e.  S
)
5150adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  U. S  e.  S )
52 simpr 462 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  T )
53 elsx 28855 . . . . 5  |-  ( ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  /\  ( U. S  e.  S  /\  a  e.  T ) )  -> 
( U. S  X.  a )  e.  ( S ×s  T ) )
5443, 44, 51, 52, 53syl22anc 1265 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  ( U. S  X.  a
)  e.  ( S ×s  T ) )
5542, 54eqeltrd 2517 . . 3  |-  ( (
ph  /\  a  e.  T )  ->  ( `' ( 2nd  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) )
5655ralrimiva 2846 . 2  |-  ( ph  ->  A. a  e.  T  ( `' ( 2nd  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) )
5711, 3ismbfm 28913 . 2  |-  ( ph  ->  ( ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM T )  <-> 
( ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( U. T  ^m  U. ( S ×s  T ) )  /\  A. a  e.  T  ( `' ( 2nd  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) ) ) )
5815, 56, 57mpbir2and 930 1  |-  ( ph  ->  ( 2nd  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782    C_ wss 3442   ~Pcpw 3985   <.cop 4008   U.cuni 4222    X. cxp 4852   `'ccnv 4853   ran crn 4855    |` cres 4856   "cima 4857    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806    ^m cmap 7480  sigAlgebracsiga 28768   ×s csx 28849  MblFnMcmbfm 28911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-siga 28769  df-sigagen 28800  df-sx 28850  df-mbfm 28912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator