MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfval Structured version   Unicode version

Theorem 2ndfval 15785
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t  |-  T  =  ( C  X.c  D )
1stfval.b  |-  B  =  ( Base `  T
)
1stfval.h  |-  H  =  ( Hom  `  T
)
1stfval.c  |-  ( ph  ->  C  e.  Cat )
1stfval.d  |-  ( ph  ->  D  e.  Cat )
2ndfval.p  |-  Q  =  ( C  2ndF  D )
Assertion
Ref Expression
2ndfval  |-  ( ph  ->  Q  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, H, y    ph, x, y
Allowed substitution hints:    Q( x, y)    T( x, y)

Proof of Theorem 2ndfval
Dummy variables  b 
c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndfval.p . 2  |-  Q  =  ( C  2ndF  D )
2 1stfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 1stfval.d . . 3  |-  ( ph  ->  D  e.  Cat )
4 fvex 5858 . . . . . . 7  |-  ( Base `  c )  e.  _V
5 fvex 5858 . . . . . . 7  |-  ( Base `  d )  e.  _V
64, 5xpex 6585 . . . . . 6  |-  ( (
Base `  c )  X.  ( Base `  d
) )  e.  _V
76a1i 11 . . . . 5  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( Base `  c
)  X.  ( Base `  d ) )  e. 
_V )
8 simpl 455 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5852 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 simpr 459 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  d  =  D )
1110fveq2d 5852 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  d
)  =  ( Base `  D ) )
129, 11xpeq12d 4847 . . . . . 6  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( Base `  c
)  X.  ( Base `  d ) )  =  ( ( Base `  C
)  X.  ( Base `  D ) ) )
13 1stfval.t . . . . . . . 8  |-  T  =  ( C  X.c  D )
14 eqid 2402 . . . . . . . 8  |-  ( Base `  C )  =  (
Base `  C )
15 eqid 2402 . . . . . . . 8  |-  ( Base `  D )  =  (
Base `  D )
1613, 14, 15xpcbas 15769 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
17 1stfval.b . . . . . . 7  |-  B  =  ( Base `  T
)
1816, 17eqtr4i 2434 . . . . . 6  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  B
1912, 18syl6eq 2459 . . . . 5  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( Base `  c
)  X.  ( Base `  d ) )  =  B )
20 simpr 459 . . . . . . 7  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  b  =  B )
2120reseq2d 5093 . . . . . 6  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  ( 2nd  |`  b )  =  ( 2nd  |`  B ) )
22 simpll 752 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  c  =  C )
23 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  d  =  D )
2422, 23oveq12d 6295 . . . . . . . . . . . 12  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  (
c  X.c  d )  =  ( C  X.c  D ) )
2524, 13syl6eqr 2461 . . . . . . . . . . 11  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  (
c  X.c  d )  =  T )
2625fveq2d 5852 . . . . . . . . . 10  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  ( Hom  `  ( c  X.c  d ) )  =  ( Hom  `  T )
)
27 1stfval.h . . . . . . . . . 10  |-  H  =  ( Hom  `  T
)
2826, 27syl6eqr 2461 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  ( Hom  `  ( c  X.c  d ) )  =  H )
2928oveqd 6294 . . . . . . . 8  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  (
x ( Hom  `  (
c  X.c  d ) ) y )  =  ( x H y ) )
3029reseq2d 5093 . . . . . . 7  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  ( 2nd  |`  ( x ( Hom  `  ( c  X.c  d ) ) y ) )  =  ( 2nd  |`  ( x H y ) ) )
3120, 20, 30mpt2eq123dv 6339 . . . . . 6  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( 2nd  |`  ( x
( Hom  `  ( c  X.c  d ) ) y ) ) )  =  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) )
3221, 31opeq12d 4166 . . . . 5  |-  ( ( ( c  =  C  /\  d  =  D )  /\  b  =  B )  ->  <. ( 2nd  |`  b ) ,  ( x  e.  b ,  y  e.  b 
|->  ( 2nd  |`  (
x ( Hom  `  (
c  X.c  d ) ) y ) ) ) >.  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
337, 19, 32csbied2 3400 . . . 4  |-  ( ( c  =  C  /\  d  =  D )  ->  [_ ( ( Base `  c )  X.  ( Base `  d ) )  /  b ]_ <. ( 2nd  |`  b ) ,  ( x  e.  b ,  y  e.  b  |->  ( 2nd  |`  (
x ( Hom  `  (
c  X.c  d ) ) y ) ) ) >.  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
34 df-2ndf 15765 . . . 4  |-  2ndF  =  (
c  e.  Cat , 
d  e.  Cat  |->  [_ ( ( Base `  c
)  X.  ( Base `  d ) )  / 
b ]_ <. ( 2nd  |`  b
) ,  ( x  e.  b ,  y  e.  b  |->  ( 2nd  |`  ( x ( Hom  `  ( c  X.c  d ) ) y ) ) ) >. )
35 opex 4654 . . . 4  |-  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >.  e.  _V
3633, 34, 35ovmpt2a 6413 . . 3  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C  2ndF  D )  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
372, 3, 36syl2anc 659 . 2  |-  ( ph  ->  ( C  2ndF  D )  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
381, 37syl5eq 2455 1  |-  ( ph  ->  Q  =  <. ( 2nd  |`  B ) ,  ( x  e.  B ,  y  e.  B  |->  ( 2nd  |`  (
x H y ) ) ) >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058   [_csb 3372   <.cop 3977    X. cxp 4820    |` cres 4824   ` cfv 5568  (class class class)co 6277    |-> cmpt2 6279   2ndc2nd 6782   Basecbs 14839   Hom chom 14918   Catccat 15276    X.c cxpc 15759    2ndF c2ndf 15761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-9 10641  df-10 10642  df-n0 10836  df-z 10905  df-dec 11019  df-uz 11127  df-fz 11725  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-hom 14931  df-cco 14932  df-xpc 15763  df-2ndf 15765
This theorem is referenced by:  2ndf1  15786  2ndf2  15787  2ndfcl  15789
  Copyright terms: Public domain W3C validator