MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfcl Unicode version

Theorem 2ndfcl 14250
Description: The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t  |-  T  =  ( C  X.c  D )
1stfcl.c  |-  ( ph  ->  C  e.  Cat )
1stfcl.d  |-  ( ph  ->  D  e.  Cat )
2ndfcl.p  |-  Q  =  ( C  2ndF  D )
Assertion
Ref Expression
2ndfcl  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )

Proof of Theorem 2ndfcl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4  |-  T  =  ( C  X.c  D )
2 eqid 2404 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2404 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
41, 2, 3xpcbas 14230 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
5 eqid 2404 . . . 4  |-  (  Hom  `  T )  =  (  Hom  `  T )
6 1stfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 1stfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 2ndfcl.p . . . 4  |-  Q  =  ( C  2ndF  D )
91, 4, 5, 6, 7, 82ndfval 14246 . . 3  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
10 fo2nd 6326 . . . . . . . 8  |-  2nd : _V -onto-> _V
11 fofun 5613 . . . . . . . 8  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
1210, 11ax-mp 8 . . . . . . 7  |-  Fun  2nd
13 fvex 5701 . . . . . . . 8  |-  ( Base `  C )  e.  _V
14 fvex 5701 . . . . . . . 8  |-  ( Base `  D )  e.  _V
1513, 14xpex 4949 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  e.  _V
16 resfunexg 5916 . . . . . . 7  |-  ( ( Fun  2nd  /\  (
( Base `  C )  X.  ( Base `  D
) )  e.  _V )  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) )  e. 
_V )
1712, 15, 16mp2an 654 . . . . . 6  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) )  e.  _V
1815, 15mpt2ex 6384 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  e.  _V
1917, 18op2ndd 6317 . . . . 5  |-  ( Q  =  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) >.  ->  ( 2nd `  Q )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) )
209, 19syl 16 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) ) )
2120opeq2d 3951 . . 3  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
229, 21eqtr4d 2439 . 2  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( 2nd `  Q ) >. )
23 eqid 2404 . . . 4  |-  (  Hom  `  D )  =  (  Hom  `  D )
24 eqid 2404 . . . 4  |-  ( Id
`  T )  =  ( Id `  T
)
25 eqid 2404 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
26 eqid 2404 . . . 4  |-  (comp `  T )  =  (comp `  T )
27 eqid 2404 . . . 4  |-  (comp `  D )  =  (comp `  D )
281, 6, 7xpccat 14242 . . . 4  |-  ( ph  ->  T  e.  Cat )
29 f2ndres 6328 . . . . 5  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  D
)
3029a1i 11 . . . 4  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  D )
)
31 eqid 2404 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )
32 ovex 6065 . . . . . . 7  |-  ( x (  Hom  `  T
) y )  e. 
_V
33 resfunexg 5916 . . . . . . 7  |-  ( ( Fun  2nd  /\  (
x (  Hom  `  T
) y )  e. 
_V )  ->  ( 2nd  |`  ( x (  Hom  `  T )
y ) )  e. 
_V )
3412, 32, 33mp2an 654 . . . . . 6  |-  ( 2nd  |`  ( x (  Hom  `  T ) y ) )  e.  _V
3531, 34fnmpt2i 6379 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  Fn  ( ( (
Base `  C )  X.  ( Base `  D
) )  X.  (
( Base `  C )  X.  ( Base `  D
) ) )
3620fneq1d 5495 . . . . 5  |-  ( ph  ->  ( ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) ) )
3735, 36mpbiri 225 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
38 f2ndres 6328 . . . . . 6  |-  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )
396adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  C  e.  Cat )
407adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  D  e.  Cat )
41 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
42 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
431, 4, 5, 39, 40, 8, 41, 422ndf2 14248 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
44 eqid 2404 . . . . . . . . . 10  |-  (  Hom  `  C )  =  (  Hom  `  C )
451, 4, 44, 23, 5, 41, 42xpchom 14232 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x (  Hom  `  T )
y )  =  ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
4645reseq2d 5105 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( 2nd  |`  (
x (  Hom  `  T
) y ) )  =  ( 2nd  |`  (
( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
4743, 46eqtrd 2436 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( (
( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
4847feq1d 5539 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )  <->  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
4938, 48mpbiri 225 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
50 fvres 5704 . . . . . . . 8  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
5150ad2antrl 709 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
52 fvres 5704 . . . . . . . 8  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5352ad2antll 710 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5451, 53oveq12d 6058 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  =  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
5545, 54feq23d 5547 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( x (  Hom  `  T ) y ) --> ( ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x ) (  Hom  `  D )
( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  <->  ( x
( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
5649, 55mpbird 224 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( x (  Hom  `  T
) y ) --> ( ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) ) )
5728adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  T  e.  Cat )
58 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
594, 5, 24, 57, 58catidcl 13862 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  e.  ( x (  Hom  `  T
) x ) )
60 fvres 5704 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  e.  ( x (  Hom  `  T ) x )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
6159, 60syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
62 1st2nd2 6345 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6362adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6463fveq2d 5691 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  ( ( Id `  T
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
656adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  C  e.  Cat )
667adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  D  e.  Cat )
67 eqid 2404 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
68 xp1st 6335 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
6968adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
70 xp2nd 6336 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
7170adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
721, 65, 66, 2, 3, 67, 25, 24, 69, 71xpcid 14241 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >. )
7364, 72eqtrd 2436 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `  ( 2nd `  x ) )
>. )
74 fvex 5701 . . . . . . . 8  |-  ( ( Id `  C ) `
 ( 1st `  x
) )  e.  _V
75 fvex 5701 . . . . . . . 8  |-  ( ( Id `  D ) `
 ( 2nd `  x
) )  e.  _V
7674, 75op2ndd 6317 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >.  ->  ( 2nd `  ( ( Id
`  T ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
7773, 76syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  (
( Id `  T
) `  x )
)  =  ( ( Id `  D ) `
 ( 2nd `  x
) ) )
7861, 77eqtrd 2436 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( ( Id
`  D ) `  ( 2nd `  x ) ) )
791, 4, 5, 65, 66, 8, 58, 582ndf2 14248 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( x ( 2nd `  Q ) x )  =  ( 2nd  |`  ( x
(  Hom  `  T ) x ) ) )
8079fveq1d 5689 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) x ) ) `
 ( ( Id
`  T ) `  x ) ) )
8150adantl 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
8281fveq2d 5691 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  D ) `  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
8378, 80, 823eqtr4d 2446 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( Id `  D
) `  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x ) ) )
84283ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  T  e.  Cat )
85 simp21 990 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
86 simp22 991 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
87 simp23 992 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
88 simp3l 985 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  f  e.  ( x (  Hom  `  T ) y ) )
89 simp3r 986 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  g  e.  ( y (  Hom  `  T ) z ) )
904, 5, 26, 84, 85, 86, 87, 88, 89catcocl 13865 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  T )
z ) f )  e.  ( x (  Hom  `  T )
z ) )
91 fvres 5704 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  T ) z ) f )  e.  ( x (  Hom  `  T
) z )  -> 
( ( 2nd  |`  (
x (  Hom  `  T
) z ) ) `
 ( g (
<. x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9290, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
931, 4, 5, 26, 85, 86, 87, 88, 89, 27xpcco2nd 14237 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9492, 93eqtrd 2436 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9563ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  C  e.  Cat )
9673ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  D  e.  Cat )
971, 4, 5, 95, 96, 8, 85, 872ndf2 14248 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) z )  =  ( 2nd  |`  (
x (  Hom  `  T
) z ) ) )
9897fveq1d 5689 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd  |`  ( x
(  Hom  `  T ) z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9985, 50syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x )  =  ( 2nd `  x
) )
10086, 52syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  y )  =  ( 2nd `  y
) )
10199, 100opeq12d 3952 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  <. ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >.  =  <. ( 2nd `  x ) ,  ( 2nd `  y
) >. )
102 fvres 5704 . . . . . . . 8  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 z )  =  ( 2nd `  z
) )
10387, 102syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  z )  =  ( 2nd `  z
) )
104101, 103oveq12d 6058 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( <. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) )  =  ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) )
1051, 4, 5, 95, 96, 8, 86, 872ndf2 14248 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( y
( 2nd `  Q
) z )  =  ( 2nd  |`  (
y (  Hom  `  T
) z ) ) )
106105fveq1d 5689 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( ( 2nd  |`  (
y (  Hom  `  T
) z ) ) `
 g ) )
107 fvres 5704 . . . . . . . 8  |-  ( g  e.  ( y (  Hom  `  T )
z )  ->  (
( 2nd  |`  ( y (  Hom  `  T
) z ) ) `
 g )  =  ( 2nd `  g
) )
10889, 107syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( y (  Hom  `  T )
z ) ) `  g )  =  ( 2nd `  g ) )
109106, 108eqtrd 2436 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( 2nd `  g ) )
1101, 4, 5, 95, 96, 8, 85, 862ndf2 14248 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) y )  =  ( 2nd  |`  (
x (  Hom  `  T
) y ) ) )
111110fveq1d 5689 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) y ) ) `
 f ) )
112 fvres 5704 . . . . . . . 8  |-  ( f  e.  ( x (  Hom  `  T )
y )  ->  (
( 2nd  |`  ( x (  Hom  `  T
) y ) ) `
 f )  =  ( 2nd `  f
) )
11388, 112syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
y ) ) `  f )  =  ( 2nd `  f ) )
114111, 113eqtrd 2436 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( 2nd `  f ) )
115104, 109, 114oveq123d 6061 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) )  =  ( ( 2nd `  g ) ( <.
( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
11694, 98, 1153eqtr4d 2446 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( ( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) ) )
1174, 3, 5, 23, 24, 25, 26, 27, 28, 7, 30, 37, 56, 83, 116isfuncd 14017 . . 3  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
) )
118 df-br 4173 . . 3  |-  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
)  <->  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
119117, 118sylib 189 . 2  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
12022, 119eqeltrd 2478 1  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916   <.cop 3777   class class class wbr 4172    X. cxp 4835    |` cres 4839   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1stc1st 6306   2ndc2nd 6307   Basecbs 13424    Hom chom 13495  compcco 13496   Catccat 13844   Idccid 13845    Func cfunc 14006    X.c cxpc 14220    2ndF c2ndf 14222
This theorem is referenced by:  prf2nd  14257  1st2ndprf  14258  uncfcl  14287  uncf1  14288  uncf2  14289  curf2ndf  14299  yonedalem1  14324  yonedalem21  14325  yonedalem22  14330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-hom 13508  df-cco 13509  df-cat 13848  df-cid 13849  df-func 14010  df-xpc 14224  df-2ndf 14226
  Copyright terms: Public domain W3C validator