MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsep Structured version   Unicode version

Theorem 2ndcsep 20416
Description: A second-countable topology is separable, which is to say it contains a countable dense subset. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
2ndcsep.1  |-  X  = 
U. J
Assertion
Ref Expression
2ndcsep  |-  ( J  e.  2ndc  ->  E. x  e.  ~P  X ( x  ~<_  om  /\  ( ( cls `  J ) `
 x )  =  X ) )
Distinct variable groups:    x, J    x, X

Proof of Theorem 2ndcsep
Dummy variables  f 
b  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 20403 . 2  |-  ( J  e.  2ndc  <->  E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `
 b )  =  J ) )
2 vex 3025 . . . . . . . . 9  |-  b  e. 
_V
3 difss 3535 . . . . . . . . 9  |-  ( b 
\  { (/) } ) 
C_  b
4 ssdomg 7569 . . . . . . . . 9  |-  ( b  e.  _V  ->  (
( b  \  { (/)
} )  C_  b  ->  ( b  \  { (/)
} )  ~<_  b ) )
52, 3, 4mp2 9 . . . . . . . 8  |-  ( b 
\  { (/) } )  ~<_  b
6 simpr 462 . . . . . . . 8  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  b  ~<_  om )
7 domtr 7576 . . . . . . . 8  |-  ( ( ( b  \  { (/)
} )  ~<_  b  /\  b  ~<_  om )  ->  (
b  \  { (/) } )  ~<_  om )
85, 6, 7sylancr 667 . . . . . . 7  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  ( b 
\  { (/) } )  ~<_  om )
9 eldifsn 4068 . . . . . . . . 9  |-  ( y  e.  ( b  \  { (/) } )  <->  ( y  e.  b  /\  y  =/=  (/) ) )
10 n0 3714 . . . . . . . . . 10  |-  ( y  =/=  (/)  <->  E. z  z  e.  y )
11 elunii 4167 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  y  /\  y  e.  b )  ->  z  e.  U. b
)
12 simpl 458 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  y  /\  y  e.  b )  ->  z  e.  y )
1311, 12jca 534 . . . . . . . . . . . . . 14  |-  ( ( z  e.  y  /\  y  e.  b )  ->  ( z  e.  U. b  /\  z  e.  y ) )
1413expcom 436 . . . . . . . . . . . . 13  |-  ( y  e.  b  ->  (
z  e.  y  -> 
( z  e.  U. b  /\  z  e.  y ) ) )
1514eximdv 1758 . . . . . . . . . . . 12  |-  ( y  e.  b  ->  ( E. z  z  e.  y  ->  E. z ( z  e.  U. b  /\  z  e.  y )
) )
1615imp 430 . . . . . . . . . . 11  |-  ( ( y  e.  b  /\  E. z  z  e.  y )  ->  E. z
( z  e.  U. b  /\  z  e.  y ) )
17 df-rex 2720 . . . . . . . . . . 11  |-  ( E. z  e.  U. b
z  e.  y  <->  E. z
( z  e.  U. b  /\  z  e.  y ) )
1816, 17sylibr 215 . . . . . . . . . 10  |-  ( ( y  e.  b  /\  E. z  z  e.  y )  ->  E. z  e.  U. b z  e.  y )
1910, 18sylan2b 477 . . . . . . . . 9  |-  ( ( y  e.  b  /\  y  =/=  (/) )  ->  E. z  e.  U. b z  e.  y )
209, 19sylbi 198 . . . . . . . 8  |-  ( y  e.  ( b  \  { (/) } )  ->  E. z  e.  U. b
z  e.  y )
2120rgen 2724 . . . . . . 7  |-  A. y  e.  ( b  \  { (/)
} ) E. z  e.  U. b z  e.  y
222uniex 6545 . . . . . . . 8  |-  U. b  e.  _V
23 eleq1 2494 . . . . . . . 8  |-  ( z  =  ( f `  y )  ->  (
z  e.  y  <->  ( f `  y )  e.  y ) )
2422, 23axcc4dom 8822 . . . . . . 7  |-  ( ( ( b  \  { (/)
} )  ~<_  om  /\  A. y  e.  ( b 
\  { (/) } ) E. z  e.  U. b z  e.  y )  ->  E. f
( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )
258, 21, 24sylancl 666 . . . . . 6  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  E. f
( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )
26 frn 5695 . . . . . . . . 9  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ran  f  C_  U. b )
2726ad2antrl 732 . . . . . . . 8  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ran  f  C_  U. b )
28 vex 3025 . . . . . . . . . 10  |-  f  e. 
_V
2928rnex 6685 . . . . . . . . 9  |-  ran  f  e.  _V
3029elpw 3930 . . . . . . . 8  |-  ( ran  f  e.  ~P U. b 
<->  ran  f  C_  U. b
)
3127, 30sylibr 215 . . . . . . 7  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ran  f  e.  ~P U. b )
32 omelon 8104 . . . . . . . . . . 11  |-  om  e.  On
336adantr 466 . . . . . . . . . . 11  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  b  ~<_  om )
34 ondomen 8419 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  b  ~<_  om )  ->  b  e.  dom  card )
3532, 33, 34sylancr 667 . . . . . . . . . 10  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  b  e.  dom  card )
36 ssnum 8421 . . . . . . . . . 10  |-  ( ( b  e.  dom  card  /\  ( b  \  { (/)
} )  C_  b
)  ->  ( b  \  { (/) } )  e. 
dom  card )
3735, 3, 36sylancl 666 . . . . . . . . 9  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( b  \  { (/) } )  e. 
dom  card )
38 ffn 5689 . . . . . . . . . . 11  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  f  Fn  ( b  \  { (/)
} ) )
3938ad2antrl 732 . . . . . . . . . 10  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  f  Fn  (
b  \  { (/) } ) )
40 dffn4 5759 . . . . . . . . . 10  |-  ( f  Fn  ( b  \  { (/) } )  <->  f :
( b  \  { (/)
} ) -onto-> ran  f
)
4139, 40sylib 199 . . . . . . . . 9  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  f : ( b  \  { (/) } ) -onto-> ran  f )
42 fodomnum 8439 . . . . . . . . 9  |-  ( ( b  \  { (/) } )  e.  dom  card  -> 
( f : ( b  \  { (/) } ) -onto-> ran  f  ->  ran  f  ~<_  ( b  \  { (/) } ) ) )
4337, 41, 42sylc 62 . . . . . . . 8  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ran  f  ~<_  ( b 
\  { (/) } ) )
448adantr 466 . . . . . . . 8  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( b  \  { (/) } )  ~<_  om )
45 domtr 7576 . . . . . . . 8  |-  ( ( ran  f  ~<_  ( b 
\  { (/) } )  /\  ( b  \  { (/) } )  ~<_  om )  ->  ran  f  ~<_  om )
4643, 44, 45syl2anc 665 . . . . . . 7  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ran  f  ~<_  om )
47 tgcl 19927 . . . . . . . . . 10  |-  ( b  e.  TopBases  ->  ( topGen `  b
)  e.  Top )
4847ad2antrr 730 . . . . . . . . 9  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( topGen `  b
)  e.  Top )
49 unitg 19924 . . . . . . . . . . . 12  |-  ( b  e.  _V  ->  U. ( topGen `
 b )  = 
U. b )
502, 49ax-mp 5 . . . . . . . . . . 11  |-  U. ( topGen `
 b )  = 
U. b
5150eqcomi 2437 . . . . . . . . . 10  |-  U. b  =  U. ( topGen `  b
)
5251clsss3 20016 . . . . . . . . 9  |-  ( ( ( topGen `  b )  e.  Top  /\  ran  f  C_ 
U. b )  -> 
( ( cls `  ( topGen `
 b ) ) `
 ran  f )  C_ 
U. b )
5348, 27, 52syl2anc 665 . . . . . . . 8  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( ( cls `  ( topGen `  b )
) `  ran  f ) 
C_  U. b )
54 ne0i 3710 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  y  ->  y  =/=  (/) )
5554anim2i 571 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  b  /\  x  e.  y )  ->  ( y  e.  b  /\  y  =/=  (/) ) )
5655, 9sylibr 215 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  b  /\  x  e.  y )  ->  y  e.  ( b 
\  { (/) } ) )
57 fnfvelrn 5978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  Fn  ( b 
\  { (/) } )  /\  y  e.  ( b  \  { (/) } ) )  ->  (
f `  y )  e.  ran  f )
5838, 57sylan 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : ( b 
\  { (/) } ) --> U. b  /\  y  e.  ( b  \  { (/)
} ) )  -> 
( f `  y
)  e.  ran  f
)
59 inelcm 3792 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f `  y
)  e.  y  /\  ( f `  y
)  e.  ran  f
)  ->  ( y  i^i  ran  f )  =/=  (/) )
6059expcom 436 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  y )  e.  ran  f  -> 
( ( f `  y )  e.  y  ->  ( y  i^i 
ran  f )  =/=  (/) ) )
6158, 60syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( f : ( b 
\  { (/) } ) --> U. b  /\  y  e.  ( b  \  { (/)
} ) )  -> 
( ( f `  y )  e.  y  ->  ( y  i^i 
ran  f )  =/=  (/) ) )
6261ex 435 . . . . . . . . . . . . . . . . 17  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ( y  e.  ( b  \  { (/)
} )  ->  (
( f `  y
)  e.  y  -> 
( y  i^i  ran  f )  =/=  (/) ) ) )
6362a2d 29 . . . . . . . . . . . . . . . 16  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ( (
y  e.  ( b 
\  { (/) } )  ->  ( f `  y )  e.  y )  ->  ( y  e.  ( b  \  { (/)
} )  ->  (
y  i^i  ran  f )  =/=  (/) ) ) )
6456, 63syl7 70 . . . . . . . . . . . . . . 15  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ( (
y  e.  ( b 
\  { (/) } )  ->  ( f `  y )  e.  y )  ->  ( (
y  e.  b  /\  x  e.  y )  ->  ( y  i^i  ran  f )  =/=  (/) ) ) )
6564exp4a 609 . . . . . . . . . . . . . 14  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ( (
y  e.  ( b 
\  { (/) } )  ->  ( f `  y )  e.  y )  ->  ( y  e.  b  ->  ( x  e.  y  ->  (
y  i^i  ran  f )  =/=  (/) ) ) ) )
6665ralimdv2 2772 . . . . . . . . . . . . 13  |-  ( f : ( b  \  { (/) } ) --> U. b  ->  ( A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y  ->  A. y  e.  b  ( x  e.  y  ->  ( y  i^i  ran  f )  =/=  (/) ) ) )
6766imp 430 . . . . . . . . . . . 12  |-  ( ( f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y )  ->  A. y  e.  b 
( x  e.  y  ->  ( y  i^i 
ran  f )  =/=  (/) ) )
6867ad2antlr 731 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  A. y  e.  b  ( x  e.  y  ->  ( y  i^i  ran  f )  =/=  (/) ) )
69 eqidd 2429 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  ( topGen `
 b )  =  ( topGen `  b )
)
7051a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  U. b  =  U. ( topGen `  b
) )
71 simplll 766 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  b  e. 
TopBases )
7227adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  ran  f  C_  U. b )
73 simpr 462 . . . . . . . . . . . 12  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  x  e.  U. b )
7469, 70, 71, 72, 73elcls3 20041 . . . . . . . . . . 11  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  (
x  e.  ( ( cls `  ( topGen `  b ) ) `  ran  f )  <->  A. y  e.  b  ( x  e.  y  ->  ( y  i^i  ran  f )  =/=  (/) ) ) )
7568, 74mpbird 235 . . . . . . . . . 10  |-  ( ( ( ( b  e.  TopBases 
/\  b  ~<_  om )  /\  ( f : ( b  \  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  /\  x  e.  U. b )  ->  x  e.  ( ( cls `  ( topGen `
 b ) ) `
 ran  f )
)
7675ex 435 . . . . . . . . 9  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( x  e. 
U. b  ->  x  e.  ( ( cls `  ( topGen `
 b ) ) `
 ran  f )
) )
7776ssrdv 3413 . . . . . . . 8  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  U. b  C_  (
( cls `  ( topGen `
 b ) ) `
 ran  f )
)
7853, 77eqssd 3424 . . . . . . 7  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  ( ( cls `  ( topGen `  b )
) `  ran  f )  =  U. b )
79 breq1 4369 . . . . . . . . 9  |-  ( x  =  ran  f  -> 
( x  ~<_  om  <->  ran  f  ~<_  om ) )
80 fveq2 5825 . . . . . . . . . 10  |-  ( x  =  ran  f  -> 
( ( cls `  ( topGen `
 b ) ) `
 x )  =  ( ( cls `  ( topGen `
 b ) ) `
 ran  f )
)
8180eqeq1d 2430 . . . . . . . . 9  |-  ( x  =  ran  f  -> 
( ( ( cls `  ( topGen `  b )
) `  x )  =  U. b  <->  ( ( cls `  ( topGen `  b
) ) `  ran  f )  =  U. b ) )
8279, 81anbi12d 715 . . . . . . . 8  |-  ( x  =  ran  f  -> 
( ( x  ~<_  om 
/\  ( ( cls `  ( topGen `  b )
) `  x )  =  U. b )  <->  ( ran  f  ~<_  om  /\  (
( cls `  ( topGen `
 b ) ) `
 ran  f )  =  U. b ) ) )
8382rspcev 3125 . . . . . . 7  |-  ( ( ran  f  e.  ~P U. b  /\  ( ran  f  ~<_  om  /\  (
( cls `  ( topGen `
 b ) ) `
 ran  f )  =  U. b ) )  ->  E. x  e.  ~P  U. b ( x  ~<_  om 
/\  ( ( cls `  ( topGen `  b )
) `  x )  =  U. b ) )
8431, 46, 78, 83syl12anc 1262 . . . . . 6  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om )  /\  (
f : ( b 
\  { (/) } ) --> U. b  /\  A. y  e.  ( b  \  { (/) } ) ( f `  y )  e.  y ) )  ->  E. x  e.  ~P  U. b ( x  ~<_  om 
/\  ( ( cls `  ( topGen `  b )
) `  x )  =  U. b ) )
8525, 84exlimddv 1774 . . . . 5  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  E. x  e.  ~P  U. b ( x  ~<_  om  /\  (
( cls `  ( topGen `
 b ) ) `
 x )  = 
U. b ) )
86 unieq 4170 . . . . . . . 8  |-  ( (
topGen `  b )  =  J  ->  U. ( topGen `
 b )  = 
U. J )
87 2ndcsep.1 . . . . . . . 8  |-  X  = 
U. J
8886, 51, 873eqtr4g 2487 . . . . . . 7  |-  ( (
topGen `  b )  =  J  ->  U. b  =  X )
8988pweqd 3929 . . . . . 6  |-  ( (
topGen `  b )  =  J  ->  ~P U. b  =  ~P X )
90 fveq2 5825 . . . . . . . . 9  |-  ( (
topGen `  b )  =  J  ->  ( cls `  ( topGen `  b )
)  =  ( cls `  J ) )
9190fveq1d 5827 . . . . . . . 8  |-  ( (
topGen `  b )  =  J  ->  ( ( cls `  ( topGen `  b
) ) `  x
)  =  ( ( cls `  J ) `
 x ) )
9291, 88eqeq12d 2443 . . . . . . 7  |-  ( (
topGen `  b )  =  J  ->  ( (
( cls `  ( topGen `
 b ) ) `
 x )  = 
U. b  <->  ( ( cls `  J ) `  x )  =  X ) )
9392anbi2d 708 . . . . . 6  |-  ( (
topGen `  b )  =  J  ->  ( (
x  ~<_  om  /\  (
( cls `  ( topGen `
 b ) ) `
 x )  = 
U. b )  <->  ( x  ~<_  om  /\  ( ( cls `  J ) `  x
)  =  X ) ) )
9489, 93rexeqbidv 2979 . . . . 5  |-  ( (
topGen `  b )  =  J  ->  ( E. x  e.  ~P  U. b
( x  ~<_  om  /\  ( ( cls `  ( topGen `
 b ) ) `
 x )  = 
U. b )  <->  E. x  e.  ~P  X ( x  ~<_  om  /\  ( ( cls `  J ) `
 x )  =  X ) ) )
9585, 94syl5ibcom 223 . . . 4  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  ( (
topGen `  b )  =  J  ->  E. x  e.  ~P  X ( x  ~<_  om  /\  ( ( cls `  J ) `
 x )  =  X ) ) )
9695impr 623 . . 3  |-  ( ( b  e.  TopBases  /\  (
b  ~<_  om  /\  ( topGen `
 b )  =  J ) )  ->  E. x  e.  ~P  X ( x  ~<_  om 
/\  ( ( cls `  J ) `  x
)  =  X ) )
9796rexlimiva 2852 . 2  |-  ( E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `  b )  =  J )  ->  E. x  e.  ~P  X ( x  ~<_  om  /\  ( ( cls `  J ) `
 x )  =  X ) )
981, 97sylbi 198 1  |-  ( J  e.  2ndc  ->  E. x  e.  ~P  X ( x  ~<_  om  /\  ( ( cls `  J ) `
 x )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437   E.wex 1657    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   _Vcvv 3022    \ cdif 3376    i^i cin 3378    C_ wss 3379   (/)c0 3704   ~Pcpw 3924   {csn 3941   U.cuni 4162   class class class wbr 4366   dom cdm 4796   ran crn 4797   Oncon0 5385    Fn wfn 5539   -->wf 5540   -onto->wfo 5542   ` cfv 5544   omcom 6650    ~<_ cdom 7522   cardccrd 8321   topGenctg 15279   Topctop 19859   TopBasesctb 19862   clsccl 19975   2ndcc2ndc 20395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cc 8816
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-er 7318  df-map 7429  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-card 8325  df-acn 8328  df-topgen 15285  df-top 19863  df-bases 19864  df-cld 19976  df-ntr 19977  df-cls 19978  df-2ndc 20397
This theorem is referenced by:  met2ndc  21480
  Copyright terms: Public domain W3C validator