Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndci Structured version   Unicode version

Theorem 2ndci 20075
 Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndci

Proof of Theorem 2ndci
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . 3
2 simpr 461 . . 3
3 eqidd 2458 . . 3
4 breq1 4459 . . . . 5
5 fveq2 5872 . . . . . 6
65eqeq1d 2459 . . . . 5
74, 6anbi12d 710 . . . 4
87rspcev 3210 . . 3
91, 2, 3, 8syl12anc 1226 . 2
10 is2ndc 20073 . 2
119, 10sylibr 212 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369   wceq 1395   wcel 1819  wrex 2808   class class class wbr 4456  cfv 5594  com 6699   cdom 7533  ctg 14855  ctb 19525  c2ndc 20065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-nul 4586 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-iota 5557  df-fv 5602  df-2ndc 20067 This theorem is referenced by:  2ndcrest  20081  2ndcomap  20085  dis2ndc  20087  dis1stc  20126  tx2ndc  20278  met2ndci  21151  re2ndc  21432
 Copyright terms: Public domain W3C validator