MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcdisj Structured version   Visualization version   Unicode version

Theorem 2ndcdisj 20464
Description: Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by Mario Carneiro, 9-Apr-2015.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
2ndcdisj  |-  ( ( J  e.  2ndc  /\  A. x  e.  A  B  e.  ( J  \  { (/)
} )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om )
Distinct variable groups:    x, y, A    y, B    x, J
Allowed substitution hints:    B( x)    J( y)

Proof of Theorem 2ndcdisj
Dummy variables  f 
b  w  z  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 20454 . . 3  |-  ( J  e.  2ndc  <->  E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `
 b )  =  J ) )
2 omex 8145 . . . . . . 7  |-  om  e.  _V
32brdom 7578 . . . . . 6  |-  ( b  ~<_  om  <->  E. f  f : b -1-1-> om )
4 ssrab2 3513 . . . . . . . . . . . . . . . . . . . 20  |-  { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  C_  ran  f
5 f1f 5777 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : b -1-1-> om  ->  f : b --> om )
6 frn 5733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : b --> om  ->  ran  f  C_  om )
75, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : b -1-1-> om  ->  ran  f  C_  om )
87adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ran  f  C_  om )
94, 8syl5ss 3442 . . . . . . . . . . . . . . . . . . 19  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } 
C_  om )
109adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( x  e.  A  /\  B  e.  (
( topGen `  b )  \  { (/) } ) ) )  ->  { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  C_  om )
11 eldifsn 4096 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ( topGen `  b )  \  { (/)
} )  <->  ( B  e.  ( topGen `  b )  /\  B  =/=  (/) ) )
12 n0 3740 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =/=  (/)  <->  E. y  y  e.  B )
13 tg2 19973 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  e.  ( topGen `  b )  /\  y  e.  B )  ->  E. z  e.  b  ( y  e.  z  /\  z  C_  B ) )
14 omsson 6693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  om  C_  On
159, 14syl6ss 3443 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } 
C_  On )
1615ad2antrr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  ->  { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } 
C_  On )
17 f1fn 5778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( f : b -1-1-> om  ->  f  Fn  b )
1817ad3antlr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
f  Fn  b )
19 simprl 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
z  e.  b )
20 fnfvelrn 6017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f  Fn  b  /\  z  e.  b )  ->  ( f `  z
)  e.  ran  f
)
2118, 19, 20syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
( f `  z
)  e.  ran  f
)
22 f1f1orn 5823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f : b -1-1-> om  ->  f : b -1-1-onto-> ran  f )
2322ad3antlr 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
f : b -1-1-onto-> ran  f
)
24 f1ocnvfv1 6173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( f : b -1-1-onto-> ran  f  /\  z  e.  b
)  ->  ( `' f `  ( f `  z ) )  =  z )
2523, 19, 24syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
( `' f `  ( f `  z
) )  =  z )
26 simprrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
z  C_  B )
27 selpw 3957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  e.  ~P B  <->  z  C_  B )
2826, 27sylibr 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
z  e.  ~P B
)
29 simprrl 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
y  e.  z )
30 ne0i 3736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( y  e.  z  ->  z  =/=  (/) )
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
z  =/=  (/) )
32 eldifsn 4096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( z  e.  ( ~P B  \  { (/) } )  <->  ( z  e.  ~P B  /\  z  =/=  (/) ) )
3328, 31, 32sylanbrc 669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
z  e.  ( ~P B  \  { (/) } ) )
3425, 33eqeltrd 2528 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  -> 
( `' f `  ( f `  z
) )  e.  ( ~P B  \  { (/)
} ) )
35 fveq2 5863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  ( f `  z )  ->  ( `' f `  n
)  =  ( `' f `  ( f `
 z ) ) )
3635eleq1d 2512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  ( f `  z )  ->  (
( `' f `  n )  e.  ( ~P B  \  { (/)
} )  <->  ( `' f `  ( f `  z ) )  e.  ( ~P B  \  { (/) } ) ) )
3736rspcev 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( f `  z
)  e.  ran  f  /\  ( `' f `  ( f `  z
) )  e.  ( ~P B  \  { (/)
} ) )  ->  E. n  e.  ran  f ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) )
3821, 34, 37syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  ->  E. n  e.  ran  f ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) )
39 rabn0 3751 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  =/=  (/)  <->  E. n  e.  ran  f ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) )
4038, 39sylibr 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  ->  { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  =/=  (/) )
41 onint 6619 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } 
C_  On  /\  { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  =/=  (/) )  ->  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  e.  { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )
4216, 40, 41syl2anc 666 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  (
z  e.  b  /\  ( y  e.  z  /\  z  C_  B
) ) )  ->  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  e.  { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )
4342rexlimdvaa 2879 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  x  e.  A
)  ->  ( E. z  e.  b  (
y  e.  z  /\  z  C_  B )  ->  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  e.  { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) )
4413, 43syl5 33 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  x  e.  A
)  ->  ( ( B  e.  ( topGen `  b )  /\  y  e.  B )  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
4544expdimp 439 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  B  e.  ( topGen `  b )
)  ->  ( y  e.  B  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
4645exlimdv 1778 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  B  e.  ( topGen `  b )
)  ->  ( E. y  y  e.  B  ->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
4712, 46syl5bi 221 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  x  e.  A )  /\  B  e.  ( topGen `  b )
)  ->  ( B  =/=  (/)  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
4847expimpd 607 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  x  e.  A
)  ->  ( ( B  e.  ( topGen `  b )  /\  B  =/=  (/) )  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
4911, 48syl5bi 221 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  x  e.  A
)  ->  ( B  e.  ( ( topGen `  b
)  \  { (/) } )  ->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
5049impr 624 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( x  e.  A  /\  B  e.  (
( topGen `  b )  \  { (/) } ) ) )  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } )
5110, 50sseldd 3432 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( x  e.  A  /\  B  e.  (
( topGen `  b )  \  { (/) } ) ) )  ->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  om )
5251expr 619 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  x  e.  A
)  ->  ( B  e.  ( ( topGen `  b
)  \  { (/) } )  ->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  om ) )
5352ralimdva 2795 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  ->  A. x  e.  A  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  e.  om ) )
5453imp 431 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `
 b )  \  { (/) } ) )  ->  A. x  e.  A  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  e.  om )
5554adantrr 722 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  A. x  e.  A  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  om )
56 eqid 2450 . . . . . . . . . . . . . 14  |-  ( x  e.  A  |->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )  =  ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )
5756fmpt 6041 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  e.  om  <->  ( x  e.  A  |->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) : A --> om )
5855, 57sylib 200 . . . . . . . . . . . 12  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  (
x  e.  A  |->  |^|
{ n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) : A --> om )
59 neeq1 2685 . . . . . . . . . . . . . . . . . . 19  |-  ( ( `' f `  z
)  =  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o )  ->  ( ( `' f `  z )  =/=  (/)  <->  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  =/=  (/) ) )
60 neeq1 2685 . . . . . . . . . . . . . . . . . . 19  |-  ( 1o  =  if ( ( `' f `  z
)  =/=  (/) ,  ( `' f `  z
) ,  1o )  ->  ( 1o  =/=  (/)  <->  if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o )  =/=  (/) ) )
61 1n0 7194 . . . . . . . . . . . . . . . . . . 19  |-  1o  =/=  (/)
6259, 60, 61elimhyp 3938 . . . . . . . . . . . . . . . . . 18  |-  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o )  =/=  (/)
63 n0 3740 . . . . . . . . . . . . . . . . . 18  |-  ( if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o )  =/=  (/)  <->  E. y 
y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o ) )
6462, 63mpbi 212 . . . . . . . . . . . . . . . . 17  |-  E. y 
y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o )
65 19.29r 1735 . . . . . . . . . . . . . . . . 17  |-  ( ( E. y  y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  /\  A. y E* x  e.  A  y  e.  B
)  ->  E. y
( y  e.  if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o )  /\  E* x  e.  A  y  e.  B ) )
6664, 65mpan 675 . . . . . . . . . . . . . . . 16  |-  ( A. y E* x  e.  A  y  e.  B  ->  E. y ( y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  /\  E* x  e.  A  y  e.  B )
)
67 eleq1 2516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  ->  (
z  e.  { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  <->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  e.  {
n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
6850, 67syl5ibrcom 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( x  e.  A  /\  B  e.  (
( topGen `  b )  \  { (/) } ) ) )  ->  ( z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  ->  z  e.  { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) )
6968imp 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  z  e.  { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } )
70 fveq2 5863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( n  =  z  ->  ( `' f `  n
)  =  ( `' f `  z ) )
7170eleq1d 2512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( n  =  z  ->  (
( `' f `  n )  e.  ( ~P B  \  { (/)
} )  <->  ( `' f `  z )  e.  ( ~P B  \  { (/) } ) ) )
7271elrab 3195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( z  e.  { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  <->  ( z  e.  ran  f  /\  ( `' f `  z
)  e.  ( ~P B  \  { (/) } ) ) )
7372simprbi 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  ->  ( `' f `  z
)  e.  ( ~P B  \  { (/) } ) )
7469, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( `' f `  z )  e.  ( ~P B  \  { (/) } ) )
75 eldifsn 4096 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( `' f `  z
)  e.  ( ~P B  \  { (/) } )  <->  ( ( `' f `  z )  e.  ~P B  /\  ( `' f `  z
)  =/=  (/) ) )
7674, 75sylib 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( ( `' f `  z
)  e.  ~P B  /\  ( `' f `  z )  =/=  (/) ) )
7776simprd 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( `' f `  z )  =/=  (/) )
7877iftrued 3888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  if (
( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o )  =  ( `' f `
 z ) )
7976simpld 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( `' f `  z )  e.  ~P B )
8079elpwid 3960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( `' f `  z )  C_  B )
8178, 80eqsstrd 3465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  if (
( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o ) 
C_  B )
8281sseld 3430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  (
x  e.  A  /\  B  e.  ( ( topGen `
 b )  \  { (/) } ) ) )  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  ->  ( y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  -> 
y  e.  B ) )
8382exp31 608 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( ( x  e.  A  /\  B  e.  ( ( topGen `  b
)  \  { (/) } ) )  ->  ( z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  ->  (
y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z
) ,  1o )  ->  y  e.  B
) ) ) )
8483com23 81 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  ( ( x  e.  A  /\  B  e.  ( ( topGen `  b
)  \  { (/) } ) )  ->  ( y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  -> 
y  e.  B ) ) ) )
8584exp4a 610 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  ( x  e.  A  ->  ( B  e.  ( ( topGen `  b
)  \  { (/) } )  ->  ( y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o )  -> 
y  e.  B ) ) ) ) )
8685com25 94 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( y  e.  if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o )  ->  (
x  e.  A  -> 
( B  e.  ( ( topGen `  b )  \  { (/) } )  -> 
( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B
) ) ) ) )
8786imp31 434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o ) )  /\  x  e.  A
)  ->  ( B  e.  ( ( topGen `  b
)  \  { (/) } )  ->  ( z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B
) ) )
8887ralimdva 2795 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  y  e.  if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o ) )  -> 
( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  ->  A. x  e.  A  ( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B
) ) )
8988imp 431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o ) )  /\  A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } ) )  ->  A. x  e.  A  ( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B
) )
9089an32s 812 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `  b
)  \  { (/) } ) )  /\  y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o ) )  ->  A. x  e.  A  ( z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B
) )
91 rmoim 3238 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  A  (
z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  ->  y  e.  B )  ->  ( E* x  e.  A  y  e.  B  ->  E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) )
9290, 91syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  TopBases 
/\  f : b
-1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `  b
)  \  { (/) } ) )  /\  y  e.  if ( ( `' f `  z )  =/=  (/) ,  ( `' f `  z ) ,  1o ) )  ->  ( E* x  e.  A  y  e.  B  ->  E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
9392expimpd 607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `
 b )  \  { (/) } ) )  ->  ( ( y  e.  if ( ( `' f `  z
)  =/=  (/) ,  ( `' f `  z
) ,  1o )  /\  E* x  e.  A  y  e.  B
)  ->  E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) )
9493exlimdv 1778 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `
 b )  \  { (/) } ) )  ->  ( E. y
( y  e.  if ( ( `' f `
 z )  =/=  (/) ,  ( `' f `
 z ) ,  1o )  /\  E* x  e.  A  y  e.  B )  ->  E* x  e.  A  z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) )
9566, 94syl5 33 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  A. x  e.  A  B  e.  ( ( topGen `
 b )  \  { (/) } ) )  ->  ( A. y E* x  e.  A  y  e.  B  ->  E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) )
9695impr 624 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  E* x  e.  A  z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )
97 nfcv 2591 . . . . . . . . . . . . . . . . 17  |-  F/_ x w
98 nfmpt1 4491 . . . . . . . . . . . . . . . . 17  |-  F/_ x
( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )
99 nfcv 2591 . . . . . . . . . . . . . . . . 17  |-  F/_ x
z
10097, 98, 99nfbr 4446 . . . . . . . . . . . . . . . 16  |-  F/ x  w ( x  e.  A  |->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z
101 nfv 1760 . . . . . . . . . . . . . . . 16  |-  F/ w
( x  e.  A  /\  z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } )
102 breq1 4404 . . . . . . . . . . . . . . . . 17  |-  ( w  =  x  ->  (
w ( x  e.  A  |->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z  <-> 
x ( x  e.  A  |->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z ) )
103 df-br 4402 . . . . . . . . . . . . . . . . . 18  |-  ( x ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) z  <->  <. x ,  z >.  e.  (
x  e.  A  |->  |^|
{ n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) )
104 df-mpt 4462 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  |->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )  =  { <. x ,  z
>.  |  ( x  e.  A  /\  z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) }
105104eleq2i 2520 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  z >.  e.  ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } )  <->  <. x ,  z
>.  e.  { <. x ,  z >.  |  ( x  e.  A  /\  z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) } )
106 opabid 4707 . . . . . . . . . . . . . . . . . 18  |-  ( <.
x ,  z >.  e.  { <. x ,  z
>.  |  ( x  e.  A  /\  z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) }  <-> 
( x  e.  A  /\  z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
107103, 105, 1063bitri 275 . . . . . . . . . . . . . . . . 17  |-  ( x ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) z  <->  ( x  e.  A  /\  z  =  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) )
108102, 107syl6bb 265 . . . . . . . . . . . . . . . 16  |-  ( w  =  x  ->  (
w ( x  e.  A  |->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z  <-> 
( x  e.  A  /\  z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) ) )
109100, 101, 108cbvmo 2334 . . . . . . . . . . . . . . 15  |-  ( E* w  w ( x  e.  A  |->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z  <->  E* x ( x  e.  A  /\  z  = 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) )
110 df-rmo 2744 . . . . . . . . . . . . . . 15  |-  ( E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) }  <->  E* x
( x  e.  A  /\  z  =  |^| { n  e.  ran  f  |  ( `' f `
 n )  e.  ( ~P B  \  { (/) } ) } ) )
111109, 110bitr4i 256 . . . . . . . . . . . . . 14  |-  ( E* w  w ( x  e.  A  |->  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z  <->  E* x  e.  A  z  =  |^| { n  e.  ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } )
11296, 111sylibr 216 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  E* w  w ( x  e.  A  |->  |^| { n  e. 
ran  f  |  ( `' f `  n
)  e.  ( ~P B  \  { (/) } ) } ) z )
113112alrimiv 1772 . . . . . . . . . . . 12  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  A. z E* w  w (
x  e.  A  |->  |^|
{ n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) z )
114 dff12 5776 . . . . . . . . . . . 12  |-  ( ( x  e.  A  |->  |^|
{ n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) : A -1-1-> om  <->  ( ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) : A --> om  /\  A. z E* w  w ( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) z ) )
11558, 113, 114sylanbrc 669 . . . . . . . . . . 11  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  (
x  e.  A  |->  |^|
{ n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) : A -1-1-> om )
116 f1domg 7586 . . . . . . . . . . 11  |-  ( om  e.  _V  ->  (
( x  e.  A  |-> 
|^| { n  e.  ran  f  |  ( `' f `  n )  e.  ( ~P B  \  { (/) } ) } ) : A -1-1-> om  ->  A  ~<_  om ) )
1172, 115, 116mpsyl 65 . . . . . . . . . 10  |-  ( ( ( b  e.  TopBases  /\  f : b -1-1-> om )  /\  ( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
) )  ->  A  ~<_  om )
118117ex 436 . . . . . . . . 9  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( ( A. x  e.  A  B  e.  ( ( topGen `  b
)  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om ) )
119 difeq1 3543 . . . . . . . . . . . . 13  |-  ( (
topGen `  b )  =  J  ->  ( ( topGen `
 b )  \  { (/) } )  =  ( J  \  { (/)
} ) )
120119eleq2d 2513 . . . . . . . . . . . 12  |-  ( (
topGen `  b )  =  J  ->  ( B  e.  ( ( topGen `  b
)  \  { (/) } )  <-> 
B  e.  ( J 
\  { (/) } ) ) )
121120ralbidv 2826 . . . . . . . . . . 11  |-  ( (
topGen `  b )  =  J  ->  ( A. x  e.  A  B  e.  ( ( topGen `  b
)  \  { (/) } )  <->  A. x  e.  A  B  e.  ( J  \  { (/) } ) ) )
122121anbi1d 710 . . . . . . . . . 10  |-  ( (
topGen `  b )  =  J  ->  ( ( A. x  e.  A  B  e.  ( ( topGen `
 b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  <->  ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )
) )
123122imbi1d 319 . . . . . . . . 9  |-  ( (
topGen `  b )  =  J  ->  ( (
( A. x  e.  A  B  e.  ( ( topGen `  b )  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  ->  A  ~<_  om )  <->  ( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om ) ) )
124118, 123syl5ibcom 224 . . . . . . . 8  |-  ( ( b  e.  TopBases  /\  f : b -1-1-> om )  ->  ( ( topGen `  b
)  =  J  -> 
( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om ) ) )
125124ex 436 . . . . . . 7  |-  ( b  e.  TopBases  ->  ( f : b -1-1-> om  ->  ( (
topGen `  b )  =  J  ->  ( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  ->  A  ~<_  om )
) ) )
126125exlimdv 1778 . . . . . 6  |-  ( b  e.  TopBases  ->  ( E. f 
f : b -1-1-> om  ->  ( ( topGen `  b
)  =  J  -> 
( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om ) ) ) )
1273, 126syl5bi 221 . . . . 5  |-  ( b  e.  TopBases  ->  ( b  ~<_  om 
->  ( ( topGen `  b
)  =  J  -> 
( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om ) ) ) )
128127impd 433 . . . 4  |-  ( b  e.  TopBases  ->  ( ( b  ~<_  om  /\  ( topGen `  b )  =  J )  ->  ( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  ->  A  ~<_  om )
) )
129128rexlimiv 2872 . . 3  |-  ( E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `  b )  =  J )  ->  ( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  ->  A  ~<_  om )
)
1301, 129sylbi 199 . 2  |-  ( J  e.  2ndc  ->  ( ( A. x  e.  A  B  e.  ( J  \  { (/) } )  /\  A. y E* x  e.  A  y  e.  B
)  ->  A  ~<_  om )
)
1311303impib 1205 1  |-  ( ( J  e.  2ndc  /\  A. x  e.  A  B  e.  ( J  \  { (/)
} )  /\  A. y E* x  e.  A  y  e.  B )  ->  A  ~<_  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 984   A.wal 1441    = wceq 1443   E.wex 1662    e. wcel 1886   E*wmo 2299    =/= wne 2621   A.wral 2736   E.wrex 2737   E*wrmo 2739   {crab 2740   _Vcvv 3044    \ cdif 3400    C_ wss 3403   (/)c0 3730   ifcif 3880   ~Pcpw 3950   {csn 3967   <.cop 3973   |^|cint 4233   class class class wbr 4401   {copab 4459    |-> cmpt 4460   `'ccnv 4832   ran crn 4834   Oncon0 5422    Fn wfn 5576   -->wf 5577   -1-1->wf1 5578   -1-1-onto->wf1o 5580   ` cfv 5581   omcom 6689   1oc1o 7172    ~<_ cdom 7564   topGenctg 15329   TopBasesctb 19913   2ndcc2ndc 20446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6690  df-1o 7179  df-dom 7568  df-topgen 15335  df-2ndc 20448
This theorem is referenced by:  2ndcdisj2  20465
  Copyright terms: Public domain W3C validator