MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndc1stc Structured version   Unicode version

Theorem 2ndc1stc 19711
Description: A second-countable space is first-countable. (Contributed by Jeff Hankins, 17-Jan-2010.)
Assertion
Ref Expression
2ndc1stc  |-  ( J  e.  2ndc  ->  J  e. 
1stc )

Proof of Theorem 2ndc1stc
Dummy variables  o 
b  p  q  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndctop 19707 . 2  |-  ( J  e.  2ndc  ->  J  e. 
Top )
2 is2ndc 19706 . . . 4  |-  ( J  e.  2ndc  <->  E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `
 b )  =  J ) )
3 ssrab2 3578 . . . . . . . . . . 11  |-  { q  e.  b  |  x  e.  q }  C_  b
4 bastg 19227 . . . . . . . . . . . 12  |-  ( b  e.  TopBases  ->  b  C_  ( topGen `
 b ) )
543ad2ant1 1012 . . . . . . . . . . 11  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  b  C_  ( topGen `  b )
)
63, 5syl5ss 3508 . . . . . . . . . 10  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  { q  e.  b  |  x  e.  q }  C_  ( topGen `
 b ) )
7 fvex 5867 . . . . . . . . . . 11  |-  ( topGen `  b )  e.  _V
87elpw2 4604 . . . . . . . . . 10  |-  ( { q  e.  b  |  x  e.  q }  e.  ~P ( topGen `  b )  <->  { q  e.  b  |  x  e.  q }  C_  ( topGen `
 b ) )
96, 8sylibr 212 . . . . . . . . 9  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  { q  e.  b  |  x  e.  q }  e.  ~P ( topGen `  b )
)
10 vex 3109 . . . . . . . . . . 11  |-  b  e. 
_V
11 ssdomg 7551 . . . . . . . . . . 11  |-  ( b  e.  _V  ->  ( { q  e.  b  |  x  e.  q }  C_  b  ->  { q  e.  b  |  x  e.  q }  ~<_  b ) )
1210, 3, 11mp2 9 . . . . . . . . . 10  |-  { q  e.  b  |  x  e.  q }  ~<_  b
13 simp2 992 . . . . . . . . . 10  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  b  ~<_  om )
14 domtr 7558 . . . . . . . . . 10  |-  ( ( { q  e.  b  |  x  e.  q }  ~<_  b  /\  b  ~<_  om )  ->  { q  e.  b  |  x  e.  q }  ~<_  om )
1512, 13, 14sylancr 663 . . . . . . . . 9  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  { q  e.  b  |  x  e.  q }  ~<_  om )
16 eltg2b 19220 . . . . . . . . . . . 12  |-  ( b  e.  TopBases  ->  ( o  e.  ( topGen `  b )  <->  A. y  e.  o  E. t  e.  b  (
y  e.  t  /\  t  C_  o ) ) )
17163ad2ant1 1012 . . . . . . . . . . 11  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  ( o  e.  ( topGen `  b )  <->  A. y  e.  o  E. t  e.  b  (
y  e.  t  /\  t  C_  o ) ) )
18 elequ1 1765 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
y  e.  t  <->  x  e.  t ) )
1918anbi1d 704 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
( y  e.  t  /\  t  C_  o
)  <->  ( x  e.  t  /\  t  C_  o ) ) )
2019rexbidv 2966 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( E. t  e.  b 
( y  e.  t  /\  t  C_  o
)  <->  E. t  e.  b  ( x  e.  t  /\  t  C_  o
) ) )
2120rspccv 3204 . . . . . . . . . . . 12  |-  ( A. y  e.  o  E. t  e.  b  (
y  e.  t  /\  t  C_  o )  -> 
( x  e.  o  ->  E. t  e.  b  ( x  e.  t  /\  t  C_  o
) ) )
22 id 22 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  b  /\  x  e.  t )  ->  ( t  e.  b  /\  x  e.  t ) )
2322adantrr 716 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  b  /\  ( x  e.  t  /\  t  C_  o ) )  ->  ( t  e.  b  /\  x  e.  t ) )
24 elequ2 1767 . . . . . . . . . . . . . . . . 17  |-  ( q  =  t  ->  (
x  e.  q  <->  x  e.  t ) )
2524elrab 3254 . . . . . . . . . . . . . . . 16  |-  ( t  e.  { q  e.  b  |  x  e.  q }  <->  ( t  e.  b  /\  x  e.  t ) )
2623, 25sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  b  /\  ( x  e.  t  /\  t  C_  o ) )  ->  t  e.  { q  e.  b  |  x  e.  q } )
2726adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b
) )  /\  (
t  e.  b  /\  ( x  e.  t  /\  t  C_  o ) ) )  ->  t  e.  { q  e.  b  |  x  e.  q } )
28 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b
) )  /\  (
t  e.  b  /\  ( x  e.  t  /\  t  C_  o ) ) )  ->  (
x  e.  t  /\  t  C_  o ) )
29 elequ2 1767 . . . . . . . . . . . . . . . 16  |-  ( p  =  t  ->  (
x  e.  p  <->  x  e.  t ) )
30 sseq1 3518 . . . . . . . . . . . . . . . 16  |-  ( p  =  t  ->  (
p  C_  o  <->  t  C_  o ) )
3129, 30anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( p  =  t  ->  (
( x  e.  p  /\  p  C_  o )  <-> 
( x  e.  t  /\  t  C_  o
) ) )
3231rspcev 3207 . . . . . . . . . . . . . 14  |-  ( ( t  e.  { q  e.  b  |  x  e.  q }  /\  ( x  e.  t  /\  t  C_  o ) )  ->  E. p  e.  { q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) )
3327, 28, 32syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b
) )  /\  (
t  e.  b  /\  ( x  e.  t  /\  t  C_  o ) ) )  ->  E. p  e.  { q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) )
3433rexlimdvaa 2949 . . . . . . . . . . . 12  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  ( E. t  e.  b  (
x  e.  t  /\  t  C_  o )  ->  E. p  e.  { q  e.  b  |  x  e.  q }  (
x  e.  p  /\  p  C_  o ) ) )
3521, 34syl9r 72 . . . . . . . . . . 11  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  ( A. y  e.  o  E. t  e.  b  (
y  e.  t  /\  t  C_  o )  -> 
( x  e.  o  ->  E. p  e.  {
q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) ) )
3617, 35sylbid 215 . . . . . . . . . 10  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  ( o  e.  ( topGen `  b )  ->  ( x  e.  o  ->  E. p  e.  {
q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) ) )
3736ralrimiv 2869 . . . . . . . . 9  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  A. o  e.  ( topGen `  b )
( x  e.  o  ->  E. p  e.  {
q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) )
38 breq1 4443 . . . . . . . . . . 11  |-  ( s  =  { q  e.  b  |  x  e.  q }  ->  (
s  ~<_  om  <->  { q  e.  b  |  x  e.  q }  ~<_  om ) )
39 rexeq 3052 . . . . . . . . . . . . 13  |-  ( s  =  { q  e.  b  |  x  e.  q }  ->  ( E. p  e.  s 
( x  e.  p  /\  p  C_  o )  <->  E. p  e.  { q  e.  b  |  x  e.  q }  (
x  e.  p  /\  p  C_  o ) ) )
4039imbi2d 316 . . . . . . . . . . . 12  |-  ( s  =  { q  e.  b  |  x  e.  q }  ->  (
( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) )  <->  ( x  e.  o  ->  E. p  e.  { q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) ) )
4140ralbidv 2896 . . . . . . . . . . 11  |-  ( s  =  { q  e.  b  |  x  e.  q }  ->  ( A. o  e.  ( topGen `
 b ) ( x  e.  o  ->  E. p  e.  s 
( x  e.  p  /\  p  C_  o ) )  <->  A. o  e.  (
topGen `  b ) ( x  e.  o  ->  E. p  e.  { q  e.  b  |  x  e.  q }  (
x  e.  p  /\  p  C_  o ) ) ) )
4238, 41anbi12d 710 . . . . . . . . . 10  |-  ( s  =  { q  e.  b  |  x  e.  q }  ->  (
( s  ~<_  om  /\  A. o  e.  ( topGen `  b ) ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) )  <-> 
( { q  e.  b  |  x  e.  q }  ~<_  om  /\  A. o  e.  ( topGen `  b ) ( x  e.  o  ->  E. p  e.  { q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) ) ) )
4342rspcev 3207 . . . . . . . . 9  |-  ( ( { q  e.  b  |  x  e.  q }  e.  ~P ( topGen `
 b )  /\  ( { q  e.  b  |  x  e.  q }  ~<_  om  /\  A. o  e.  ( topGen `  b )
( x  e.  o  ->  E. p  e.  {
q  e.  b  |  x  e.  q }  ( x  e.  p  /\  p  C_  o ) ) ) )  ->  E. s  e.  ~P  ( topGen `  b )
( s  ~<_  om  /\  A. o  e.  ( topGen `  b ) ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) )
449, 15, 37, 43syl12anc 1221 . . . . . . . 8  |-  ( ( b  e.  TopBases  /\  b  ~<_  om  /\  x  e.  U. ( topGen `  b )
)  ->  E. s  e.  ~P  ( topGen `  b
) ( s  ~<_  om 
/\  A. o  e.  (
topGen `  b ) ( x  e.  o  ->  E. p  e.  s 
( x  e.  p  /\  p  C_  o ) ) ) )
45443expia 1193 . . . . . . 7  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  ( x  e.  U. ( topGen `  b )  ->  E. s  e.  ~P  ( topGen `  b
) ( s  ~<_  om 
/\  A. o  e.  (
topGen `  b ) ( x  e.  o  ->  E. p  e.  s 
( x  e.  p  /\  p  C_  o ) ) ) ) )
46 unieq 4246 . . . . . . . . 9  |-  ( (
topGen `  b )  =  J  ->  U. ( topGen `
 b )  = 
U. J )
4746eleq2d 2530 . . . . . . . 8  |-  ( (
topGen `  b )  =  J  ->  ( x  e.  U. ( topGen `  b
)  <->  x  e.  U. J
) )
48 pweq 4006 . . . . . . . . 9  |-  ( (
topGen `  b )  =  J  ->  ~P ( topGen `
 b )  =  ~P J )
49 raleq 3051 . . . . . . . . . 10  |-  ( (
topGen `  b )  =  J  ->  ( A. o  e.  ( topGen `  b ) ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) )  <->  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) )
5049anbi2d 703 . . . . . . . . 9  |-  ( (
topGen `  b )  =  J  ->  ( (
s  ~<_  om  /\  A. o  e.  ( topGen `  b )
( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) )  <->  ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) )
5148, 50rexeqbidv 3066 . . . . . . . 8  |-  ( (
topGen `  b )  =  J  ->  ( E. s  e.  ~P  ( topGen `
 b ) ( s  ~<_  om  /\  A. o  e.  ( topGen `  b )
( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) )  <->  E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) )
5247, 51imbi12d 320 . . . . . . 7  |-  ( (
topGen `  b )  =  J  ->  ( (
x  e.  U. ( topGen `
 b )  ->  E. s  e.  ~P  ( topGen `  b )
( s  ~<_  om  /\  A. o  e.  ( topGen `  b ) ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) )  <->  ( x  e. 
U. J  ->  E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) ) )
5345, 52syl5ibcom 220 . . . . . 6  |-  ( ( b  e.  TopBases  /\  b  ~<_  om )  ->  ( (
topGen `  b )  =  J  ->  ( x  e.  U. J  ->  E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) ) )
5453expimpd 603 . . . . 5  |-  ( b  e.  TopBases  ->  ( ( b  ~<_  om  /\  ( topGen `  b )  =  J )  ->  ( x  e.  U. J  ->  E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) ) )
5554rexlimiv 2942 . . . 4  |-  ( E. b  e.  TopBases  ( b  ~<_  om  /\  ( topGen `  b )  =  J )  ->  ( x  e.  U. J  ->  E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) )
562, 55sylbi 195 . . 3  |-  ( J  e.  2ndc  ->  ( x  e.  U. J  ->  E. s  e.  ~P  J ( s  ~<_  om 
/\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) )
5756ralrimiv 2869 . 2  |-  ( J  e.  2ndc  ->  A. x  e.  U. J E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) )
58 eqid 2460 . . 3  |-  U. J  =  U. J
5958is1stc2 19702 . 2  |-  ( J  e.  1stc  <->  ( J  e. 
Top  /\  A. x  e.  U. J E. s  e.  ~P  J ( s  ~<_  om  /\  A. o  e.  J  ( x  e.  o  ->  E. p  e.  s  ( x  e.  p  /\  p  C_  o ) ) ) ) )
601, 57, 59sylanbrc 664 1  |-  ( J  e.  2ndc  ->  J  e. 
1stc )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3106    C_ wss 3469   ~Pcpw 4003   U.cuni 4238   class class class wbr 4440   ` cfv 5579   omcom 6671    ~<_ cdom 7504   topGenctg 14682   Topctop 19154   TopBasesctb 19158   1stcc1stc 19697   2ndcc2ndc 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-dom 7508  df-topgen 14688  df-top 19159  df-bases 19161  df-1stc 19699  df-2ndc 19700
This theorem is referenced by:  dis1stc  19759
  Copyright terms: Public domain W3C validator