Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Unicode version

Theorem 2moswap 2378
 Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 1789 . . . 4
21moexex 2371 . . 3
32expcom 435 . 2
4 19.8a 1806 . . . . 5
54pm4.71ri 633 . . . 4
65exbii 1644 . . 3
76mobii 2301 . 2
83, 7syl6ibr 227 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369  wal 1377  wex 1596  wmo 2276 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-eu 2279  df-mo 2280 This theorem is referenced by:  2euswap  2379  2eu1OLD  2387  2rmoswap  31979
 Copyright terms: Public domain W3C validator