MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Unicode version

Theorem 2moswap 2366
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 1845 . . . 4  |-  F/ y E. y ph
21moexex 2360 . . 3  |-  ( ( E* x E. y ph  /\  A. x E* y ph )  ->  E* y E. x ( E. y ph  /\  ph ) )
32expcom 433 . 2  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ( E. y ph  /\  ph ) ) )
4 19.8a 1862 . . . . 5  |-  ( ph  ->  E. y ph )
54pm4.71ri 631 . . . 4  |-  ( ph  <->  ( E. y ph  /\  ph ) )
65exbii 1672 . . 3  |-  ( E. x ph  <->  E. x
( E. y ph  /\ 
ph ) )
76mobii 2309 . 2  |-  ( E* y E. x ph  <->  E* y E. x ( E. y ph  /\  ph ) )
83, 7syl6ibr 227 1  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   A.wal 1396   E.wex 1617   E*wmo 2285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-eu 2288  df-mo 2289
This theorem is referenced by:  2euswap  2367  2eu1OLD  2374  2rmoswap  32428
  Copyright terms: Public domain W3C validator