Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moswap Structured version   Unicode version

Theorem 2moswap 2353
 Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2moswap

Proof of Theorem 2moswap
StepHypRef Expression
1 nfe1 1894 . . . 4
21moexex 2347 . . 3
32expcom 436 . 2
4 19.8a 1912 . . . . 5
54pm4.71ri 637 . . . 4
65exbii 1712 . . 3
76mobii 2299 . 2
83, 7syl6ibr 230 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370  wal 1435  wex 1657  wmo 2277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-eu 2280  df-mo 2281 This theorem is referenced by:  2euswap  2354  2rmoswap  38419
 Copyright terms: Public domain W3C validator