Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmj Structured version   Visualization version   Unicode version

Theorem 2lplnmj 33199
Description: The meet of two lattice planes is a lattice line iff their join is a lattice volume. (Contributed by NM, 13-Jul-2012.)
Hypotheses
Ref Expression
2lplnmj.j  |-  .\/  =  ( join `  K )
2lplnmj.m  |-  ./\  =  ( meet `  K )
2lplnmj.n  |-  N  =  ( LLines `  K )
2lplnmj.p  |-  P  =  ( LPlanes `  K )
2lplnmj.v  |-  V  =  ( LVols `  K )
Assertion
Ref Expression
2lplnmj  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( ( X  ./\  Y )  e.  N  <->  ( X  .\/  Y )  e.  V
) )

Proof of Theorem 2lplnmj
StepHypRef Expression
1 simp1 1009 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  K  e.  HL )
2 eqid 2453 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
3 2lplnmj.p . . . . 5  |-  P  =  ( LPlanes `  K )
42, 3lplnbase 33111 . . . 4  |-  ( X  e.  P  ->  X  e.  ( Base `  K
) )
543ad2ant2 1031 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  X  e.  ( Base `  K ) )
62, 3lplnbase 33111 . . . 4  |-  ( Y  e.  P  ->  Y  e.  ( Base `  K
) )
763ad2ant3 1032 . . 3  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  Y  e.  ( Base `  K ) )
8 2lplnmj.j . . . 4  |-  .\/  =  ( join `  K )
9 2lplnmj.m . . . 4  |-  ./\  =  ( meet `  K )
10 eqid 2453 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
112, 8, 9, 10cvrexch 32997 . . 3  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
121, 5, 7, 11syl3anc 1269 . 2  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( ( X  ./\  Y ) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
13 simpl1 1012 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
)  e.  N )  ->  K  e.  HL )
14 simpr 463 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
)  e.  N )  ->  ( X  ./\  Y )  e.  N )
15 simpl3 1014 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
)  e.  N )  ->  Y  e.  P
)
16 hllat 32941 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
17 eqid 2453 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
182, 17, 9latmle2 16335 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y ) ( le `  K ) Y )
1916, 4, 6, 18syl3an 1311 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  ./\  Y
) ( le `  K ) Y )
2019adantr 467 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
)  e.  N )  ->  ( X  ./\  Y ) ( le `  K ) Y )
21 2lplnmj.n . . . . 5  |-  N  =  ( LLines `  K )
2217, 10, 21, 3llncvrlpln2 33134 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  N  /\  Y  e.  P )  /\  ( X  ./\  Y
) ( le `  K ) Y )  ->  ( X  ./\  Y ) (  <o  `  K
) Y )
2313, 14, 15, 20, 22syl31anc 1272 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
)  e.  N )  ->  ( X  ./\  Y ) (  <o  `  K
) Y )
24 simpl3 1014 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  ->  Y  e.  P )
252, 9latmcl 16310 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
2616, 4, 6, 25syl3an 1311 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  ./\  Y
)  e.  ( Base `  K ) )
271, 26, 73jca 1189 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )
282, 10, 21, 3llncvrlpln 33135 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  ( X  ./\  Y ) ( 
<o  `  K ) Y )  ->  ( ( X  ./\  Y )  e.  N  <->  Y  e.  P
) )
2927, 28sylan 474 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  -> 
( ( X  ./\  Y )  e.  N  <->  Y  e.  P ) )
3024, 29mpbird 236 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  -> 
( X  ./\  Y
)  e.  N )
3123, 30impbida 844 . 2  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( ( X  ./\  Y )  e.  N  <->  ( X  ./\ 
Y ) (  <o  `  K ) Y ) )
32 simpl1 1012 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  .\/  Y
)  e.  V )  ->  K  e.  HL )
33 simpl2 1013 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  .\/  Y
)  e.  V )  ->  X  e.  P
)
34 simpr 463 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  .\/  Y
)  e.  V )  ->  ( X  .\/  Y )  e.  V )
352, 17, 8latlej1 16318 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  X
( le `  K
) ( X  .\/  Y ) )
3616, 4, 6, 35syl3an 1311 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  X ( le `  K ) ( X 
.\/  Y ) )
3736adantr 467 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  .\/  Y
)  e.  V )  ->  X ( le
`  K ) ( X  .\/  Y ) )
38 2lplnmj.v . . . . 5  |-  V  =  ( LVols `  K )
3917, 10, 3, 38lplncvrlvol2 33192 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  ( X  .\/  Y )  e.  V )  /\  X ( le `  K ) ( X 
.\/  Y ) )  ->  X (  <o  `  K ) ( X 
.\/  Y ) )
4032, 33, 34, 37, 39syl31anc 1272 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  ( X  .\/  Y
)  e.  V )  ->  X (  <o  `  K ) ( X 
.\/  Y ) )
41 simpl2 1013 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  X  e.  P )
422, 8latjcl 16309 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  .\/  Y )  e.  ( Base `  K
) )
4316, 4, 6, 42syl3an 1311 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( X  .\/  Y
)  e.  ( Base `  K ) )
441, 5, 433jca 1189 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  ( X  .\/  Y )  e.  ( Base `  K
) ) )
452, 10, 3, 38lplncvrlvol 33193 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  ( X  .\/  Y )  e.  ( Base `  K
) )  /\  X
(  <o  `  K )
( X  .\/  Y
) )  ->  ( X  e.  P  <->  ( X  .\/  Y )  e.  V
) )
4644, 45sylan 474 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  ( X  e.  P  <->  ( X  .\/  Y )  e.  V
) )
4741, 46mpbid 214 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  ( X  .\/  Y )  e.  V )
4840, 47impbida 844 . 2  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( ( X  .\/  Y )  e.  V  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
4912, 31, 483bitr4d 289 1  |-  ( ( K  e.  HL  /\  X  e.  P  /\  Y  e.  P )  ->  ( ( X  ./\  Y )  e.  N  <->  ( X  .\/  Y )  e.  V
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   class class class wbr 4405   ` cfv 5585  (class class class)co 6295   Basecbs 15133   lecple 15209   joincjn 16201   meetcmee 16202   Latclat 16303    <o ccvr 32840   HLchlt 32928   LLinesclln 33068   LPlanesclpl 33069   LVolsclvol 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-preset 16185  df-poset 16203  df-plt 16216  df-lub 16232  df-glb 16233  df-join 16234  df-meet 16235  df-p0 16297  df-lat 16304  df-clat 16366  df-oposet 32754  df-ol 32756  df-oml 32757  df-covers 32844  df-ats 32845  df-atl 32876  df-cvlat 32900  df-hlat 32929  df-llines 33075  df-lplanes 33076  df-lvols 33077
This theorem is referenced by:  dalem15  33255
  Copyright terms: Public domain W3C validator