Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmj Structured version   Unicode version

Theorem 2llnmj 34233
Description: The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
Hypotheses
Ref Expression
2llnmj.j  |-  .\/  =  ( join `  K )
2llnmj.m  |-  ./\  =  ( meet `  K )
2llnmj.a  |-  A  =  ( Atoms `  K )
2llnmj.n  |-  N  =  ( LLines `  K )
2llnmj.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
2llnmj  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( ( X  ./\  Y )  e.  A  <->  ( X  .\/  Y )  e.  P
) )

Proof of Theorem 2llnmj
StepHypRef Expression
1 simp1 991 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  K  e.  HL )
2 eqid 2462 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
3 2llnmj.n . . . . 5  |-  N  =  ( LLines `  K )
42, 3llnbase 34182 . . . 4  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
543ad2ant2 1013 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  X  e.  ( Base `  K ) )
62, 3llnbase 34182 . . . 4  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
763ad2ant3 1014 . . 3  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  Y  e.  ( Base `  K ) )
8 2llnmj.j . . . 4  |-  .\/  =  ( join `  K )
9 2llnmj.m . . . 4  |-  ./\  =  ( meet `  K )
10 eqid 2462 . . . 4  |-  (  <o  `  K )  =  ( 
<o  `  K )
112, 8, 9, 10cvrexch 34093 . . 3  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
121, 5, 7, 11syl3anc 1223 . 2  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( ( X  ./\  Y ) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
13 simpl1 994 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
)  e.  A )  ->  K  e.  HL )
14 simpr 461 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
)  e.  A )  ->  ( X  ./\  Y )  e.  A )
15 simpl3 996 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
)  e.  A )  ->  Y  e.  N
)
16 hllat 34037 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
17 eqid 2462 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
182, 17, 9latmle2 15555 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y ) ( le `  K ) Y )
1916, 4, 6, 18syl3an 1265 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  ./\  Y
) ( le `  K ) Y )
2019adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
)  e.  A )  ->  ( X  ./\  Y ) ( le `  K ) Y )
21 2llnmj.a . . . . 5  |-  A  =  ( Atoms `  K )
2217, 10, 21, 3atcvrlln2 34192 . . . 4  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  A  /\  Y  e.  N )  /\  ( X  ./\  Y
) ( le `  K ) Y )  ->  ( X  ./\  Y ) (  <o  `  K
) Y )
2313, 14, 15, 20, 22syl31anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
)  e.  A )  ->  ( X  ./\  Y ) (  <o  `  K
) Y )
24 simpl3 996 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  ->  Y  e.  N )
252, 9latmcl 15530 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
2616, 4, 6, 25syl3an 1265 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  ./\  Y
)  e.  ( Base `  K ) )
271, 26, 73jca 1171 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )
282, 10, 21, 3atcvrlln 34193 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  ( X  ./\  Y ) ( 
<o  `  K ) Y )  ->  ( ( X  ./\  Y )  e.  A  <->  Y  e.  N
) )
2927, 28sylan 471 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  -> 
( ( X  ./\  Y )  e.  A  <->  Y  e.  N ) )
3024, 29mpbird 232 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  ./\  Y
) (  <o  `  K
) Y )  -> 
( X  ./\  Y
)  e.  A )
3123, 30impbida 829 . 2  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( ( X  ./\  Y )  e.  A  <->  ( X  ./\ 
Y ) (  <o  `  K ) Y ) )
32 simpl1 994 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  .\/  Y
)  e.  P )  ->  K  e.  HL )
33 simpl2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  .\/  Y
)  e.  P )  ->  X  e.  N
)
34 simpr 461 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  .\/  Y
)  e.  P )  ->  ( X  .\/  Y )  e.  P )
352, 17, 8latlej1 15538 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  X
( le `  K
) ( X  .\/  Y ) )
3616, 4, 6, 35syl3an 1265 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  X ( le `  K ) ( X 
.\/  Y ) )
3736adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  .\/  Y
)  e.  P )  ->  X ( le
`  K ) ( X  .\/  Y ) )
38 2llnmj.p . . . . 5  |-  P  =  ( LPlanes `  K )
3917, 10, 3, 38llncvrlpln2 34230 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  ( X  .\/  Y )  e.  P )  /\  X ( le `  K ) ( X 
.\/  Y ) )  ->  X (  <o  `  K ) ( X 
.\/  Y ) )
4032, 33, 34, 37, 39syl31anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  .\/  Y
)  e.  P )  ->  X (  <o  `  K ) ( X 
.\/  Y ) )
41 simpl2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  X  e.  N )
422, 8latjcl 15529 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  .\/  Y )  e.  ( Base `  K
) )
4316, 4, 6, 42syl3an 1265 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X  .\/  Y
)  e.  ( Base `  K ) )
441, 5, 433jca 1171 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  ( X  .\/  Y )  e.  ( Base `  K
) ) )
452, 10, 3, 38llncvrlpln 34231 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  ( X  .\/  Y )  e.  ( Base `  K
) )  /\  X
(  <o  `  K )
( X  .\/  Y
) )  ->  ( X  e.  N  <->  ( X  .\/  Y )  e.  P
) )
4644, 45sylan 471 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  ( X  e.  N  <->  ( X  .\/  Y )  e.  P
) )
4741, 46mpbid 210 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  X (  <o  `  K
) ( X  .\/  Y ) )  ->  ( X  .\/  Y )  e.  P )
4840, 47impbida 829 . 2  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( ( X  .\/  Y )  e.  P  <->  X (  <o  `  K ) ( X  .\/  Y ) ) )
4912, 31, 483bitr4d 285 1  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( ( X  ./\  Y )  e.  A  <->  ( X  .\/  Y )  e.  P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   lecple 14553   joincjn 15422   meetcmee 15423   Latclat 15523    <o ccvr 33936   Atomscatm 33937   HLchlt 34024   LLinesclln 34164   LPlanesclpl 34165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-lat 15524  df-clat 15586  df-oposet 33850  df-ol 33852  df-oml 33853  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996  df-hlat 34025  df-llines 34171  df-lplanes 34172
This theorem is referenced by:  2atmat  34234  dalem2  34334  dalemdea  34335  dalem22  34368  dalem23  34369  arglem1N  34863  cdleme16d  34954  cdleme20l2  34994
  Copyright terms: Public domain W3C validator