Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmeqat Structured version   Unicode version

Theorem 2llnmeqat 33573
Description: An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
2llnmeqat.l  |-  .<_  =  ( le `  K )
2llnmeqat.m  |-  ./\  =  ( meet `  K )
2llnmeqat.a  |-  A  =  ( Atoms `  K )
2llnmeqat.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
2llnmeqat  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  =  ( X  ./\  Y ) )

Proof of Theorem 2llnmeqat
StepHypRef Expression
1 simp3r 1017 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  .<_  ( X  ./\  Y
) )
2 hlatl 33363 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
323ad2ant1 1009 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  AtLat )
4 simp23 1023 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  e.  A )
5 simp1 988 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  HL )
6 simp21 1021 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  e.  N )
7 simp22 1022 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  Y  e.  N )
8 simp3l 1016 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  =/=  Y )
9 hllat 33366 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1093ad2ant1 1009 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  K  e.  Lat )
11 eqid 2454 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
12 2llnmeqat.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
1311, 12atbase 33292 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
144, 13syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  e.  ( Base `  K
) )
15 2llnmeqat.n . . . . . . . . 9  |-  N  =  ( LLines `  K )
1611, 15llnbase 33511 . . . . . . . 8  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
176, 16syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  X  e.  ( Base `  K
) )
1811, 15llnbase 33511 . . . . . . . 8  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
197, 18syl 16 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  Y  e.  ( Base `  K
) )
20 2llnmeqat.l . . . . . . . 8  |-  .<_  =  ( le `  K )
21 2llnmeqat.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
2211, 20, 21latlem12 15370 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  X  /\  P  .<_  Y )  <-> 
P  .<_  ( X  ./\  Y ) ) )
2310, 14, 17, 19, 22syl13anc 1221 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  (
( P  .<_  X  /\  P  .<_  Y )  <->  P  .<_  ( X  ./\  Y )
) )
241, 23mpbird 232 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( P  .<_  X  /\  P  .<_  Y ) )
25 eqid 2454 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
2620, 21, 25, 12, 152llnm4 33572 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  X  e.  N  /\  Y  e.  N
)  /\  ( P  .<_  X  /\  P  .<_  Y ) )  ->  ( X  ./\  Y )  =/=  ( 0. `  K
) )
275, 4, 6, 7, 24, 26syl131anc 1232 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( X  ./\  Y )  =/=  ( 0. `  K
) )
2821, 25, 12, 152llnmat 33526 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  ( 0.
`  K ) ) )  ->  ( X  ./\ 
Y )  e.  A
)
295, 6, 7, 8, 27, 28syl32anc 1227 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( X  ./\  Y )  e.  A )
3020, 12atcmp 33314 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  ( X  ./\  Y )  e.  A )  ->  ( P  .<_  ( X  ./\  Y )  <->  P  =  ( X  ./\  Y ) ) )
313, 4, 29, 30syl3anc 1219 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  ( P  .<_  ( X  ./\  Y )  <->  P  =  ( X  ./\  Y ) ) )
321, 31mpbid 210 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  P  e.  A
)  /\  ( X  =/=  Y  /\  P  .<_  ( X  ./\  Y )
) )  ->  P  =  ( X  ./\  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   meetcmee 15237   0.cp0 15329   Latclat 15337   Atomscatm 33266   AtLatcal 33267   HLchlt 33353   LLinesclln 33493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-llines 33500
This theorem is referenced by:  cdlemeg46req  34531
  Copyright terms: Public domain W3C validator