Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnma1b Structured version   Unicode version

Theorem 2llnma1b 33736
Description: Generalization of 2llnma1 33737. (Contributed by NM, 26-Apr-2013.)
Hypotheses
Ref Expression
2llnma1b.b  |-  B  =  ( Base `  K
)
2llnma1b.l  |-  .<_  =  ( le `  K )
2llnma1b.j  |-  .\/  =  ( join `  K )
2llnma1b.m  |-  ./\  =  ( meet `  K )
2llnma1b.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2llnma1b  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  =  P )

Proof of Theorem 2llnma1b
StepHypRef Expression
1 hllat 33314 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 1009 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  Lat )
3 simp22 1022 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  e.  A )
4 2llnma1b.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 2llnma1b.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 33240 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  e.  B )
8 simp21 1021 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  X  e.  B )
9 2llnma1b.l . . . . . 6  |-  .<_  =  ( le `  K )
10 2llnma1b.j . . . . . 6  |-  .\/  =  ( join `  K )
114, 9, 10latlej1 15332 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  P  .<_  ( P  .\/  X ) )
122, 7, 8, 11syl3anc 1219 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( P  .\/  X
) )
13 simp23 1023 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  Q  e.  A )
144, 5atbase 33240 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
1513, 14syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  Q  e.  B )
164, 9, 10latlej1 15332 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  P  .<_  ( P  .\/  Q ) )
172, 7, 15, 16syl3anc 1219 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( P  .\/  Q
) )
184, 10latjcl 15323 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .\/  X
)  e.  B )
192, 7, 8, 18syl3anc 1219 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  X )  e.  B )
20 simp1 988 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  HL )
214, 10, 5hlatjcl 33317 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  B )
2220, 3, 13, 21syl3anc 1219 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  Q )  e.  B )
23 2llnma1b.m . . . . . 6  |-  ./\  =  ( meet `  K )
244, 9, 23latlem12 15350 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( P  .\/  X
)  e.  B  /\  ( P  .\/  Q )  e.  B ) )  ->  ( ( P 
.<_  ( P  .\/  X
)  /\  P  .<_  ( P  .\/  Q ) )  <->  P  .<_  ( ( P  .\/  X ) 
./\  ( P  .\/  Q ) ) ) )
252, 7, 19, 22, 24syl13anc 1221 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .<_  ( P 
.\/  X )  /\  P  .<_  ( P  .\/  Q ) )  <->  P  .<_  ( ( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
2612, 17, 25mpbi2and 912 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) ) )
27 hlatl 33311 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
28273ad2ant1 1009 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  K  e.  AtLat )
29 simp3 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  -.  Q  .<_  ( P  .\/  X ) )
30 nbrne2 4408 . . . . . 6  |-  ( ( P  .<_  ( P  .\/  X )  /\  -.  Q  .<_  ( P  .\/  X ) )  ->  P  =/=  Q )
3112, 29, 30syl2anc 661 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  =/=  Q )
324, 10latjcl 15323 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  X )  e.  B  /\  Q  e.  B )  ->  (
( P  .\/  X
)  .\/  Q )  e.  B )
332, 19, 15, 32syl3anc 1219 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  .\/  Q )  e.  B )
344, 9, 10latlej1 15332 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  X )  e.  B  /\  Q  e.  B )  ->  ( P  .\/  X )  .<_  ( ( P  .\/  X )  .\/  Q ) )
352, 19, 15, 34syl3anc 1219 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .\/  X )  .<_  ( ( P  .\/  X )  .\/  Q ) )
364, 9, 2, 7, 19, 33, 12, 35lattrd 15330 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  .<_  ( ( P  .\/  X )  .\/  Q ) )
374, 9, 10, 23, 5cvrat3 33392 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( P  .\/  X )  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( ( P  =/=  Q  /\  -.  Q  .<_  ( P  .\/  X )  /\  P  .<_  ( ( P  .\/  X
)  .\/  Q )
)  ->  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  e.  A ) )
38373impia 1185 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( P  .\/  X )  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  ( P  =/=  Q  /\  -.  Q  .<_  ( P 
.\/  X )  /\  P  .<_  ( ( P 
.\/  X )  .\/  Q ) ) )  -> 
( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  e.  A )
3920, 19, 3, 13, 31, 29, 36, 38syl133anc 1242 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  e.  A )
409, 5atcmp 33262 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  e.  A )  ->  ( P  .<_  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) )  <->  P  =  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
4128, 3, 39, 40syl3anc 1219 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  ( P  .<_  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) )  <->  P  =  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) ) ) )
4226, 41mpbid 210 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  P  =  ( ( P 
.\/  X )  ./\  ( P  .\/  Q ) ) )
4342eqcomd 2459 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  Q  .<_  ( P  .\/  X
) )  ->  (
( P  .\/  X
)  ./\  ( P  .\/  Q ) )  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   class class class wbr 4390   ` cfv 5516  (class class class)co 6190   Basecbs 14276   lecple 14347   joincjn 15216   meetcmee 15217   Latclat 15317   Atomscatm 33214   AtLatcal 33215   HLchlt 33301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-poset 15218  df-plt 15230  df-lub 15246  df-glb 15247  df-join 15248  df-meet 15249  df-p0 15311  df-lat 15318  df-clat 15380  df-oposet 33127  df-ol 33129  df-oml 33130  df-covers 33217  df-ats 33218  df-atl 33249  df-cvlat 33273  df-hlat 33302
This theorem is referenced by:  2llnma1  33737  cdlemg4  34567  cdlemkfid1N  34871
  Copyright terms: Public domain W3C validator