Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm2N Structured version   Unicode version

Theorem 2llnm2N 32585
Description: The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnm2.l  |-  .<_  =  ( le `  K )
2llnm2.m  |-  ./\  =  ( meet `  K )
2llnm2.a  |-  A  =  ( Atoms `  K )
2llnm2.n  |-  N  =  ( LLines `  K )
2llnm2.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
2llnm2N  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  A )

Proof of Theorem 2llnm2N
StepHypRef Expression
1 simp22 1031 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  Y  e.  N )
2 simp1 997 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  K  e.  HL )
3 hllat 32381 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 1018 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  K  e.  Lat )
5 simp21 1030 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  e.  N )
6 eqid 2402 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 2llnm2.n . . . . . 6  |-  N  =  ( LLines `  K )
86, 7llnbase 32526 . . . . 5  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
95, 8syl 17 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  e.  ( Base `  K
) )
106, 7llnbase 32526 . . . . 5  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
111, 10syl 17 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  Y  e.  ( Base `  K
) )
12 2llnm2.m . . . . 5  |-  ./\  =  ( meet `  K )
136, 12latmcl 16006 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
144, 9, 11, 13syl3anc 1230 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
15 2llnm2.l . . . . . . 7  |-  .<_  =  ( le `  K )
16 eqid 2402 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
17 2llnm2.p . . . . . . 7  |-  P  =  ( LPlanes `  K )
1815, 16, 7, 172llnjN 32584 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X ( join `  K
) Y )  =  W )
19 simp23 1032 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  W  e.  P )
2018, 19eqeltrd 2490 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X ( join `  K
) Y )  e.  P )
216, 15, 16latlej1 16014 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  X  .<_  ( X ( join `  K ) Y ) )
224, 9, 11, 21syl3anc 1230 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  .<_  ( X ( join `  K ) Y ) )
23 eqid 2402 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
2415, 23, 7, 17llncvrlpln2 32574 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  ( X ( join `  K
) Y )  e.  P )  /\  X  .<_  ( X ( join `  K ) Y ) )  ->  X (  <o  `  K ) ( X ( join `  K
) Y ) )
252, 5, 20, 22, 24syl31anc 1233 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X
(  <o  `  K )
( X ( join `  K ) Y ) )
266, 16, 12, 23cvrexch 32437 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X ( join `  K
) Y ) ) )
272, 9, 11, 26syl3anc 1230 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X ( join `  K
) Y ) ) )
2825, 27mpbird 232 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y ) ( 
<o  `  K ) Y )
29 2llnm2.a . . . 4  |-  A  =  ( Atoms `  K )
306, 23, 29, 7atcvrlln 32537 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  ( X  ./\  Y ) ( 
<o  `  K ) Y )  ->  ( ( X  ./\  Y )  e.  A  <->  Y  e.  N
) )
312, 14, 11, 28, 30syl31anc 1233 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( X  ./\  Y
)  e.  A  <->  Y  e.  N ) )
321, 31mpbird 232 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   joincjn 15897   meetcmee 15898   Latclat 15999    <o ccvr 32280   Atomscatm 32281   HLchlt 32368   LLinesclln 32508   LPlanesclpl 32509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516
This theorem is referenced by:  2llnm3N  32586
  Copyright terms: Public domain W3C validator