Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm2N Structured version   Unicode version

Theorem 2llnm2N 33551
Description: The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnm2.l  |-  .<_  =  ( le `  K )
2llnm2.m  |-  ./\  =  ( meet `  K )
2llnm2.a  |-  A  =  ( Atoms `  K )
2llnm2.n  |-  N  =  ( LLines `  K )
2llnm2.p  |-  P  =  ( LPlanes `  K )
Assertion
Ref Expression
2llnm2N  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  A )

Proof of Theorem 2llnm2N
StepHypRef Expression
1 simp22 1022 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  Y  e.  N )
2 simp1 988 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  K  e.  HL )
3 hllat 33347 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
433ad2ant1 1009 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  K  e.  Lat )
5 simp21 1021 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  e.  N )
6 eqid 2454 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
7 2llnm2.n . . . . . 6  |-  N  =  ( LLines `  K )
86, 7llnbase 33492 . . . . 5  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
95, 8syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  e.  ( Base `  K
) )
106, 7llnbase 33492 . . . . 5  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
111, 10syl 16 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  Y  e.  ( Base `  K
) )
12 2llnm2.m . . . . 5  |-  ./\  =  ( meet `  K )
136, 12latmcl 15342 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
144, 9, 11, 13syl3anc 1219 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
15 2llnm2.l . . . . . . 7  |-  .<_  =  ( le `  K )
16 eqid 2454 . . . . . . 7  |-  ( join `  K )  =  (
join `  K )
17 2llnm2.p . . . . . . 7  |-  P  =  ( LPlanes `  K )
1815, 16, 7, 172llnjN 33550 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X ( join `  K
) Y )  =  W )
19 simp23 1023 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  W  e.  P )
2018, 19eqeltrd 2542 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X ( join `  K
) Y )  e.  P )
216, 15, 16latlej1 15350 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  X  .<_  ( X ( join `  K ) Y ) )
224, 9, 11, 21syl3anc 1219 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X  .<_  ( X ( join `  K ) Y ) )
23 eqid 2454 . . . . . 6  |-  (  <o  `  K )  =  ( 
<o  `  K )
2415, 23, 7, 17llncvrlpln2 33540 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  ( X ( join `  K
) Y )  e.  P )  /\  X  .<_  ( X ( join `  K ) Y ) )  ->  X (  <o  `  K ) ( X ( join `  K
) Y ) )
252, 5, 20, 22, 24syl31anc 1222 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  X
(  <o  `  K )
( X ( join `  K ) Y ) )
266, 16, 12, 23cvrexch 33403 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X ( join `  K
) Y ) ) )
272, 9, 11, 26syl3anc 1219 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( X  ./\  Y
) (  <o  `  K
) Y  <->  X (  <o  `  K ) ( X ( join `  K
) Y ) ) )
2825, 27mpbird 232 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y ) ( 
<o  `  K ) Y )
29 2llnm2.a . . . 4  |-  A  =  ( Atoms `  K )
306, 23, 29, 7atcvrlln 33503 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  ./\  Y
)  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  /\  ( X  ./\  Y ) ( 
<o  `  K ) Y )  ->  ( ( X  ./\  Y )  e.  A  <->  Y  e.  N
) )
312, 14, 11, 28, 30syl31anc 1222 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  (
( X  ./\  Y
)  e.  A  <->  Y  e.  N ) )
321, 31mpbird 232 1  |-  ( ( K  e.  HL  /\  ( X  e.  N  /\  Y  e.  N  /\  W  e.  P
)  /\  ( X  .<_  W  /\  Y  .<_  W  /\  X  =/=  Y
) )  ->  ( X  ./\  Y )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   meetcmee 15235   Latclat 15335    <o ccvr 33246   Atomscatm 33247   HLchlt 33334   LLinesclln 33474   LPlanesclpl 33475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-llines 33481  df-lplanes 33482
This theorem is referenced by:  2llnm3N  33552
  Copyright terms: Public domain W3C validator