MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2idlval Structured version   Unicode version

Theorem 2idlval 17680
Description: Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
2idlval.i  |-  I  =  (LIdeal `  R )
2idlval.o  |-  O  =  (oppr
`  R )
2idlval.j  |-  J  =  (LIdeal `  O )
2idlval.t  |-  T  =  (2Ideal `  R )
Assertion
Ref Expression
2idlval  |-  T  =  ( I  i^i  J
)

Proof of Theorem 2idlval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 2idlval.t . 2  |-  T  =  (2Ideal `  R )
2 fveq2 5866 . . . . . 6  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
3 2idlval.i . . . . . 6  |-  I  =  (LIdeal `  R )
42, 3syl6eqr 2526 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  r )  =  I )
5 fveq2 5866 . . . . . . . 8  |-  ( r  =  R  ->  (oppr `  r
)  =  (oppr `  R
) )
6 2idlval.o . . . . . . . 8  |-  O  =  (oppr
`  R )
75, 6syl6eqr 2526 . . . . . . 7  |-  ( r  =  R  ->  (oppr `  r
)  =  O )
87fveq2d 5870 . . . . . 6  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  (LIdeal `  O
) )
9 2idlval.j . . . . . 6  |-  J  =  (LIdeal `  O )
108, 9syl6eqr 2526 . . . . 5  |-  ( r  =  R  ->  (LIdeal `  (oppr
`  r ) )  =  J )
114, 10ineq12d 3701 . . . 4  |-  ( r  =  R  ->  (
(LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) )  =  ( I  i^i  J ) )
12 df-2idl 17679 . . . 4  |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
13 fvex 5876 . . . . . 6  |-  (LIdeal `  R )  e.  _V
143, 13eqeltri 2551 . . . . 5  |-  I  e. 
_V
1514inex1 4588 . . . 4  |-  ( I  i^i  J )  e. 
_V
1611, 12, 15fvmpt 5950 . . 3  |-  ( R  e.  _V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
17 fvprc 5860 . . . 4  |-  ( -.  R  e.  _V  ->  (2Ideal `  R )  =  (/) )
18 inss1 3718 . . . . 5  |-  ( I  i^i  J )  C_  I
19 fvprc 5860 . . . . . 6  |-  ( -.  R  e.  _V  ->  (LIdeal `  R )  =  (/) )
203, 19syl5eq 2520 . . . . 5  |-  ( -.  R  e.  _V  ->  I  =  (/) )
21 sseq0 3817 . . . . 5  |-  ( ( ( I  i^i  J
)  C_  I  /\  I  =  (/) )  -> 
( I  i^i  J
)  =  (/) )
2218, 20, 21sylancr 663 . . . 4  |-  ( -.  R  e.  _V  ->  ( I  i^i  J )  =  (/) )
2317, 22eqtr4d 2511 . . 3  |-  ( -.  R  e.  _V  ->  (2Ideal `  R )  =  ( I  i^i  J ) )
2416, 23pm2.61i 164 . 2  |-  (2Ideal `  R )  =  ( I  i^i  J )
251, 24eqtri 2496 1  |-  T  =  ( I  i^i  J
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ` cfv 5588  opprcoppr 17072  LIdealclidl 17616  2Idealc2idl 17678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-2idl 17679
This theorem is referenced by:  2idlcpbl  17681  divs1  17682  divsrhm  17684  crng2idl  17686
  Copyright terms: Public domain W3C validator