MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exnaln Structured version   Unicode version

Theorem 2exnaln 1695
Description: Theorem *11.22 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2exnaln  |-  ( E. x E. y ph  <->  -. 
A. x A. y  -.  ph )

Proof of Theorem 2exnaln
StepHypRef Expression
1 df-ex 1658 . 2  |-  ( E. x E. y ph  <->  -. 
A. x  -.  E. y ph )
2 alnex 1659 . . 3  |-  ( A. y  -.  ph  <->  -.  E. y ph )
32albii 1685 . 2  |-  ( A. x A. y  -.  ph  <->  A. x  -.  E. y ph )
41, 3xchbinxr 312 1  |-  ( E. x E. y ph  <->  -. 
A. x A. y  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187   A.wal 1435   E.wex 1657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676
This theorem depends on definitions:  df-bi 188  df-ex 1658
This theorem is referenced by:  2nexaln  1696  excom  1903  cbvex2  2086  bj-cbvex2v  31303
  Copyright terms: Public domain W3C validator