MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exeu Structured version   Unicode version

Theorem 2exeu 2368
Description: Double existential uniqueness implies double uniqueness quantification. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.)
Assertion
Ref Expression
2exeu  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! x E! y ph )

Proof of Theorem 2exeu
StepHypRef Expression
1 eumo 2315 . . . 4  |-  ( E! x E. y ph  ->  E* x E. y ph )
2 euex 2310 . . . . 5  |-  ( E! y ph  ->  E. y ph )
32moimi 2338 . . . 4  |-  ( E* x E. y ph  ->  E* x E! y
ph )
41, 3syl 16 . . 3  |-  ( E! x E. y ph  ->  E* x E! y
ph )
5 2euex 2363 . . 3  |-  ( E! y E. x ph  ->  E. x E! y
ph )
64, 5anim12ci 565 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  -> 
( E. x E! y ph  /\  E* x E! y ph )
)
7 eu5 2312 . 2  |-  ( E! x E! y ph  <->  ( E. x E! y
ph  /\  E* x E! y ph ) )
86, 7sylibr 212 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! x E! y ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   E.wex 1617   E!weu 2284   E*wmo 2285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-eu 2288  df-mo 2289
This theorem is referenced by:  2eu1  2373  2eu1OLD  2374  2eu2  2375  2eu3  2376
  Copyright terms: Public domain W3C validator