MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euswap Structured version   Visualization version   Unicode version

Theorem 2euswap 2387
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2euswap  |-  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) )

Proof of Theorem 2euswap
StepHypRef Expression
1 excomim 1939 . . . 4  |-  ( E. x E. y ph  ->  E. y E. x ph )
21a1i 11 . . 3  |-  ( A. x E* y ph  ->  ( E. x E. y ph  ->  E. y E. x ph ) )
3 2moswap 2386 . . 3  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )
42, 3anim12d 570 . 2  |-  ( A. x E* y ph  ->  ( ( E. x E. y ph  /\  E* x E. y ph )  -> 
( E. y E. x ph  /\  E* y E. x ph )
) )
5 eu5 2335 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
6 eu5 2335 . 2  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E* y E. x ph ) )
74, 5, 63imtr4g 278 1  |-  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375   A.wal 1452   E.wex 1673   E!weu 2309   E*wmo 2310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-eu 2313  df-mo 2314
This theorem is referenced by:  2eu1  2392  euxfr2  3234  2reuswap  3253  2reuswap2  28172
  Copyright terms: Public domain W3C validator