MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu8 Structured version   Visualization version   Unicode version

Theorem 2eu8 2391
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put  E! on either of the internal conjuncts but not both. We can also commute  E! x E! y using 2eu7 2390. (Contributed by NM, 20-Feb-2005.)
Assertion
Ref Expression
2eu8  |-  ( E! x E! y ( E. x ph  /\  E. y ph )  <->  E! x E! y ( E! x ph  /\  E. y ph ) )

Proof of Theorem 2eu8
StepHypRef Expression
1 2eu2 2385 . . 3  |-  ( E! x E. y ph  ->  ( E! y E! x ph  <->  E! y E. x ph ) )
21pm5.32i 643 . 2  |-  ( ( E! x E. y ph  /\  E! y E! x ph )  <->  ( E! x E. y ph  /\  E! y E. x ph ) )
3 nfeu1 2311 . . . . 5  |-  F/ x E! x ph
43nfeu 2317 . . . 4  |-  F/ x E! y E! x ph
54euan 2361 . . 3  |-  ( E! x ( E! y E! x ph  /\  E. y ph )  <->  ( E! y E! x ph  /\  E! x E. y ph ) )
6 ancom 452 . . . . . 6  |-  ( ( E! x ph  /\  E. y ph )  <->  ( E. y ph  /\  E! x ph ) )
76eubii 2323 . . . . 5  |-  ( E! y ( E! x ph  /\  E. y ph ) 
<->  E! y ( E. y ph  /\  E! x ph ) )
8 nfe1 1920 . . . . . 6  |-  F/ y E. y ph
98euan 2361 . . . . 5  |-  ( E! y ( E. y ph  /\  E! x ph ) 
<->  ( E. y ph  /\  E! y E! x ph ) )
10 ancom 452 . . . . 5  |-  ( ( E. y ph  /\  E! y E! x ph ) 
<->  ( E! y E! x ph  /\  E. y ph ) )
117, 9, 103bitri 275 . . . 4  |-  ( E! y ( E! x ph  /\  E. y ph ) 
<->  ( E! y E! x ph  /\  E. y ph ) )
1211eubii 2323 . . 3  |-  ( E! x E! y ( E! x ph  /\  E. y ph )  <->  E! x
( E! y E! x ph  /\  E. y ph ) )
13 ancom 452 . . 3  |-  ( ( E! x E. y ph  /\  E! y E! x ph )  <->  ( E! y E! x ph  /\  E! x E. y ph ) )
145, 12, 133bitr4ri 282 . 2  |-  ( ( E! x E. y ph  /\  E! y E! x ph )  <->  E! x E! y ( E! x ph  /\  E. y ph ) )
15 2eu7 2390 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  E! x E! y ( E. x ph  /\  E. y ph ) )
162, 14, 153bitr3ri 280 1  |-  ( E! x E! y ( E. x ph  /\  E. y ph )  <->  E! x E! y ( E! x ph  /\  E. y ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371   E.wex 1665   E!weu 2301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1449  df-ex 1666  df-nf 1670  df-eu 2305  df-mo 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator