MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu4OLD Structured version   Unicode version

Theorem 2eu4OLD 2368
Description: Obsolete proof of 2eu4 2367 as of 14-Sep-2019. (Contributed by NM, 3-Dec-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2eu4OLD  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Distinct variable groups:    x, y,
z, w    ph, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2eu4OLD
StepHypRef Expression
1 eu3v 2285 . . 3  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E. z A. x ( E. y ph  ->  x  =  z ) ) )
2 eu3v 2285 . . 3  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )
31, 2anbi12i 697 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( ( E. x E. y ph  /\ 
E. z A. x
( E. y ph  ->  x  =  z ) )  /\  ( E. y E. x ph  /\ 
E. w A. y
( E. x ph  ->  y  =  w ) ) ) )
4 an4 820 . 2  |-  ( ( ( E. x E. y ph  /\  E. z A. x ( E. y ph  ->  x  =  z ) )  /\  ( E. y E. x ph  /\ 
E. w A. y
( E. x ph  ->  y  =  w ) ) )  <->  ( ( E. x E. y ph  /\ 
E. y E. x ph )  /\  ( E. z A. x ( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) ) )
5 excom 1787 . . . . 5  |-  ( E. y E. x ph  <->  E. x E. y ph )
65anbi2i 694 . . . 4  |-  ( ( E. x E. y ph  /\  E. y E. x ph )  <->  ( E. x E. y ph  /\  E. x E. y ph ) )
7 anidm 644 . . . 4  |-  ( ( E. x E. y ph  /\  E. x E. y ph )  <->  E. x E. y ph )
86, 7bitri 249 . . 3  |-  ( ( E. x E. y ph  /\  E. y E. x ph )  <->  E. x E. y ph )
9 19.26 1647 . . . . . . . 8  |-  ( A. x ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. x A. y ( ph  ->  y  =  w ) ) )
10 nfa1 1831 . . . . . . . . . . 11  |-  F/ x A. x A. y (
ph  ->  y  =  w )
111019.3 1822 . . . . . . . . . 10  |-  ( A. x A. x A. y
( ph  ->  y  =  w )  <->  A. x A. y ( ph  ->  y  =  w ) )
1211anbi2i 694 . . . . . . . . 9  |-  ( ( A. x A. y
( ph  ->  x  =  z )  /\  A. x A. x A. y
( ph  ->  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
13 jcab 858 . . . . . . . . . . . . 13  |-  ( (
ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
1413albii 1610 . . . . . . . . . . . 12  |-  ( A. y ( ph  ->  ( x  =  z  /\  y  =  w )
)  <->  A. y ( (
ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) ) )
15 19.26 1647 . . . . . . . . . . . 12  |-  ( A. y ( ( ph  ->  x  =  z )  /\  ( ph  ->  y  =  w ) )  <-> 
( A. y (
ph  ->  x  =  z )  /\  A. y
( ph  ->  y  =  w ) ) )
1614, 15bitri 249 . . . . . . . . . . 11  |-  ( A. y ( ph  ->  ( x  =  z  /\  y  =  w )
)  <->  ( A. y
( ph  ->  x  =  z )  /\  A. y ( ph  ->  y  =  w ) ) )
1716albii 1610 . . . . . . . . . 10  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( A. y (
ph  ->  x  =  z )  /\  A. y
( ph  ->  y  =  w ) ) )
18 19.26 1647 . . . . . . . . . 10  |-  ( A. x ( A. y
( ph  ->  x  =  z )  /\  A. y ( ph  ->  y  =  w ) )  <-> 
( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y (
ph  ->  y  =  w ) ) )
1917, 18bitri 249 . . . . . . . . 9  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x A. y ( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2012, 19bitr4i 252 . . . . . . . 8  |-  ( ( A. x A. y
( ph  ->  x  =  z )  /\  A. x A. x A. y
( ph  ->  y  =  w ) )  <->  A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w )
) )
219, 20bitr2i 250 . . . . . . 7  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x
( A. y (
ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
22 19.26 1647 . . . . . . . . 9  |-  ( A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <-> 
( A. y A. y ( ph  ->  x  =  z )  /\  A. y A. x (
ph  ->  y  =  w ) ) )
23 nfa1 1831 . . . . . . . . . . 11  |-  F/ y A. y ( ph  ->  x  =  z )
242319.3 1822 . . . . . . . . . 10  |-  ( A. y A. y ( ph  ->  x  =  z )  <->  A. y ( ph  ->  x  =  z ) )
25 alcom 1783 . . . . . . . . . 10  |-  ( A. y A. x ( ph  ->  y  =  w )  <->  A. x A. y (
ph  ->  y  =  w ) )
2624, 25anbi12i 697 . . . . . . . . 9  |-  ( ( A. y A. y
( ph  ->  x  =  z )  /\  A. y A. x ( ph  ->  y  =  w ) )  <->  ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2722, 26bitri 249 . . . . . . . 8  |-  ( A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <-> 
( A. y (
ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2827albii 1610 . . . . . . 7  |-  ( A. x A. y ( A. y ( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <->  A. x ( A. y
( ph  ->  x  =  z )  /\  A. x A. y ( ph  ->  y  =  w ) ) )
2921, 28bitr4i 252 . . . . . 6  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  A. x A. y ( A. y
( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) ) )
30 19.23v 1910 . . . . . . . 8  |-  ( A. y ( ph  ->  x  =  z )  <->  ( E. y ph  ->  x  =  z ) )
31 19.23v 1910 . . . . . . . 8  |-  ( A. x ( ph  ->  y  =  w )  <->  ( E. x ph  ->  y  =  w ) )
3230, 31anbi12i 697 . . . . . . 7  |-  ( ( A. y ( ph  ->  x  =  z )  /\  A. x (
ph  ->  y  =  w ) )  <->  ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) ) )
33322albii 1611 . . . . . 6  |-  ( A. x A. y ( A. y ( ph  ->  x  =  z )  /\  A. x ( ph  ->  y  =  w ) )  <->  A. x A. y ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) ) )
34 nfe1 1778 . . . . . . . 8  |-  F/ y E. y ph
35 nfv 1673 . . . . . . . 8  |-  F/ y  x  =  z
3634, 35nfim 1853 . . . . . . 7  |-  F/ y ( E. y ph  ->  x  =  z )
37 nfe1 1778 . . . . . . . 8  |-  F/ x E. x ph
38 nfv 1673 . . . . . . . 8  |-  F/ x  y  =  w
3937, 38nfim 1853 . . . . . . 7  |-  F/ x
( E. x ph  ->  y  =  w )
4036, 39aaan 1903 . . . . . 6  |-  ( A. x A. y ( ( E. y ph  ->  x  =  z )  /\  ( E. x ph  ->  y  =  w ) )  <-> 
( A. x ( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) ) )
4129, 33, 403bitri 271 . . . . 5  |-  ( A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  ( A. x ( E. y ph  ->  x  =  z )  /\  A. y
( E. x ph  ->  y  =  w ) ) )
42412exbii 1635 . . . 4  |-  ( E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) )  <->  E. z E. w ( A. x
( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) ) )
43 eeanv 1932 . . . 4  |-  ( E. z E. w ( A. x ( E. y ph  ->  x  =  z )  /\  A. y ( E. x ph  ->  y  =  w ) )  <->  ( E. z A. x ( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )
4442, 43bitr2i 250 . . 3  |-  ( ( E. z A. x
( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) )  <->  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w )
) )
458, 44anbi12i 697 . 2  |-  ( ( ( E. x E. y ph  /\  E. y E. x ph )  /\  ( E. z A. x
( E. y ph  ->  x  =  z )  /\  E. w A. y ( E. x ph  ->  y  =  w ) ) )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
463, 4, 453bitri 271 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E. x E. y ph  /\  E. z E. w A. x A. y ( ph  ->  ( x  =  z  /\  y  =  w ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367   E.wex 1586   E!weu 2253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587  df-nf 1590  df-eu 2257  df-mo 2258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator