MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu3 Structured version   Visualization version   Unicode version

Theorem 2eu3 2394
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu3  |-  ( A. x A. y ( E* x ph  \/  E* y ph )  ->  (
( E! x E! y ph  /\  E! y E! x ph )  <->  ( E! x E. y ph  /\  E! y E. x ph ) ) )

Proof of Theorem 2eu3
StepHypRef Expression
1 nfmo1 2320 . . . . 5  |-  F/ y E* y ph
2119.31 2058 . . . 4  |-  ( A. y ( E* x ph  \/  E* y ph ) 
<->  ( A. y E* x ph  \/  E* y ph ) )
32albii 1701 . . 3  |-  ( A. x A. y ( E* x ph  \/  E* y ph )  <->  A. x
( A. y E* x ph  \/  E* y ph ) )
4 nfmo1 2320 . . . . 5  |-  F/ x E* x ph
54nfal 2040 . . . 4  |-  F/ x A. y E* x ph
6519.32 2057 . . 3  |-  ( A. x ( A. y E* x ph  \/  E* y ph )  <->  ( A. y E* x ph  \/  A. x E* y ph ) )
73, 6bitri 257 . 2  |-  ( A. x A. y ( E* x ph  \/  E* y ph )  <->  ( A. y E* x ph  \/  A. x E* y ph ) )
8 2eu1 2392 . . . . . . 7  |-  ( A. y E* x ph  ->  ( E! y E! x ph 
<->  ( E! y E. x ph  /\  E! x E. y ph )
) )
98biimpd 212 . . . . . 6  |-  ( A. y E* x ph  ->  ( E! y E! x ph  ->  ( E! y E. x ph  /\  E! x E. y ph ) ) )
10 ancom 456 . . . . . 6  |-  ( ( E! y E. x ph  /\  E! x E. y ph )  <->  ( E! x E. y ph  /\  E! y E. x ph ) )
119, 10syl6ib 234 . . . . 5  |-  ( A. y E* x ph  ->  ( E! y E! x ph  ->  ( E! x E. y ph  /\  E! y E. x ph )
) )
1211adantld 473 . . . 4  |-  ( A. y E* x ph  ->  ( ( E! x E! y ph  /\  E! y E! x ph )  ->  ( E! x E. y ph  /\  E! y E. x ph )
) )
13 2eu1 2392 . . . . . 6  |-  ( A. x E* y ph  ->  ( E! x E! y
ph 
<->  ( E! x E. y ph  /\  E! y E. x ph )
) )
1413biimpd 212 . . . . 5  |-  ( A. x E* y ph  ->  ( E! x E! y
ph  ->  ( E! x E. y ph  /\  E! y E. x ph )
) )
1514adantrd 474 . . . 4  |-  ( A. x E* y ph  ->  ( ( E! x E! y ph  /\  E! y E! x ph )  ->  ( E! x E. y ph  /\  E! y E. x ph )
) )
1612, 15jaoi 385 . . 3  |-  ( ( A. y E* x ph  \/  A. x E* y ph )  -> 
( ( E! x E! y ph  /\  E! y E! x ph )  ->  ( E! x E. y ph  /\  E! y E. x ph )
) )
17 2exeu 2388 . . . 4  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! x E! y ph )
18 2exeu 2388 . . . . 5  |-  ( ( E! y E. x ph  /\  E! x E. y ph )  ->  E! y E! x ph )
1918ancoms 459 . . . 4  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  ->  E! y E! x ph )
2017, 19jca 539 . . 3  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  -> 
( E! x E! y ph  /\  E! y E! x ph )
)
2116, 20impbid1 208 . 2  |-  ( ( A. y E* x ph  \/  A. x E* y ph )  -> 
( ( E! x E! y ph  /\  E! y E! x ph )  <->  ( E! x E. y ph  /\  E! y E. x ph ) ) )
227, 21sylbi 200 1  |-  ( A. x A. y ( E* x ph  \/  E* y ph )  ->  (
( E! x E! y ph  /\  E! y E! x ph )  <->  ( E! x E. y ph  /\  E! y E. x ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375   A.wal 1452   E.wex 1673   E!weu 2309   E*wmo 2310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-eu 2313  df-mo 2314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator