Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu1OLD Structured version   Unicode version

Theorem 2eu1OLD 2363
 Description: Obsolete proof of 2eu1 2362 as of 11-Nov-2019. (Contributed by NM, 3-Dec-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2eu1OLD

Proof of Theorem 2eu1OLD
StepHypRef Expression
1 eu5 2296 . . . . . . . 8
2 eu5 2296 . . . . . . . . . 10
32exbii 1654 . . . . . . . . 9
42mobii 2293 . . . . . . . . 9
53, 4anbi12i 697 . . . . . . . 8
61, 5bitri 249 . . . . . . 7
76simprbi 464 . . . . . 6
8 sp 1845 . . . . . . . . . . . 12
98anim2i 569 . . . . . . . . . . 11
109ancoms 453 . . . . . . . . . 10
1110moimi 2326 . . . . . . . . 9
12 nfa1 1883 . . . . . . . . . 10
1312moanim 2336 . . . . . . . . 9
1411, 13sylib 196 . . . . . . . 8
1514ancrd 554 . . . . . . 7
16 2moswap 2355 . . . . . . . . 9
1716com12 31 . . . . . . . 8
1817imdistani 690 . . . . . . 7
1915, 18syl6 33 . . . . . 6
207, 19syl 16 . . . . 5
21 2eu2ex 2354 . . . . . 6
22 excom 1835 . . . . . . 7
2321, 22sylib 196 . . . . . 6
2421, 23jca 532 . . . . 5
2520, 24jctild 543 . . . 4
26 eu5 2296 . . . . . 6
27 eu5 2296 . . . . . 6
2826, 27anbi12i 697 . . . . 5
29 an4 824 . . . . 5
3028, 29bitri 249 . . . 4
3125, 30syl6ibr 227 . . 3
3231com12 31 . 2
33 2exeu 2357 . 2
3432, 33impbid1 203 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1381  wex 1599  weu 2268  wmo 2269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-eu 2272  df-mo 2273 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator