MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2efiatan Structured version   Unicode version

Theorem 2efiatan 23388
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
2efiatan  |-  ( A  e.  dom arctan  ->  ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 ) )

Proof of Theorem 2efiatan
StepHypRef Expression
1 atanval 23354 . . . . 5  |-  ( A  e.  dom arctan  ->  (arctan `  A )  =  ( ( _i  /  2
)  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) ) )
21oveq2d 6234 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( ( 2  x.  _i )  x.  ( (
_i  /  2 )  x.  ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) ) ) )
3 2cn 10545 . . . . . 6  |-  2  e.  CC
43a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  2  e.  CC )
5 ax-icn 9484 . . . . . 6  |-  _i  e.  CC
65a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  _i  e.  CC )
7 atancl 23351 . . . . 5  |-  ( A  e.  dom arctan  ->  (arctan `  A )  e.  CC )
84, 6, 7mulassd 9552 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  (arctan `  A
) )  =  ( 2  x.  ( _i  x.  (arctan `  A
) ) ) )
9 halfcl 10703 . . . . . . . . . 10  |-  ( _i  e.  CC  ->  (
_i  /  2 )  e.  CC )
105, 9ax-mp 5 . . . . . . . . 9  |-  ( _i 
/  2 )  e.  CC
113, 5, 10mulassi 9538 . . . . . . . 8  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  =  ( 2  x.  (
_i  x.  ( _i  /  2 ) ) )
123, 5, 10mul12i 9708 . . . . . . . 8  |-  ( 2  x.  ( _i  x.  ( _i  /  2
) ) )  =  ( _i  x.  (
2  x.  ( _i 
/  2 ) ) )
13 2ne0 10567 . . . . . . . . . . 11  |-  2  =/=  0
145, 3, 13divcan2i 10226 . . . . . . . . . 10  |-  ( 2  x.  ( _i  / 
2 ) )  =  _i
1514oveq2i 6229 . . . . . . . . 9  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  =  ( _i  x.  _i )
16 ixi 10117 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
1715, 16eqtri 2425 . . . . . . . 8  |-  ( _i  x.  ( 2  x.  ( _i  /  2
) ) )  = 
-u 1
1811, 12, 173eqtri 2429 . . . . . . 7  |-  ( ( 2  x.  _i )  x.  ( _i  / 
2 ) )  = 
-u 1
1918oveq1i 6228 . . . . . 6  |-  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( -u 1  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
20 ax-1cn 9483 . . . . . . . . . 10  |-  1  e.  CC
21 atandm2 23347 . . . . . . . . . . . 12  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
2221simp1bi 1009 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  A  e.  CC )
23 mulcl 9509 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
245, 22, 23sylancr 661 . . . . . . . . . 10  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
25 subcl 9754 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
2620, 24, 25sylancr 661 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
2721simp2bi 1010 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
2826, 27logcld 23066 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
29 addcl 9507 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
3020, 24, 29sylancr 661 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
3121simp3bi 1011 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
3230, 31logcld 23066 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
3328, 32subcld 9866 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  CC )
3433mulm1d 9948 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  ( ( log `  ( 1  -  ( _i  x.  A ) ) )  -  ( log `  (
1  +  ( _i  x.  A ) ) ) ) )  = 
-u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
3519, 34syl5eq 2449 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  -u ( ( log `  ( 1  -  (
_i  x.  A )
) )  -  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
36 2mulicn 10701 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
3736a1i 11 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  e.  CC )
3810a1i 11 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( _i 
/  2 )  e.  CC )
3937, 38, 33mulassd 9552 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  x.  ( _i  /  2 ) )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )  =  ( ( 2  x.  _i )  x.  ( ( _i  / 
2 )  x.  (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) ) )
4028, 32negsubdi2d 9882 . . . . 5  |-  ( A  e.  dom arctan  ->  -u (
( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )
4135, 39, 403eqtr3d 2445 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  x.  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  A ) ) )  -  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
422, 8, 413eqtr3d 2445 . . 3  |-  ( A  e.  dom arctan  ->  ( 2  x.  ( _i  x.  (arctan `  A ) ) )  =  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  -  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )
4342fveq2d 5795 . 2  |-  ( A  e.  dom arctan  ->  ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
44 efsub 13860 . . 3  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  CC  /\  ( log `  ( 1  -  ( _i  x.  A ) ) )  e.  CC )  -> 
( exp `  (
( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  /  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
4532, 28, 44syl2anc 659 . 2  |-  ( A  e.  dom arctan  ->  ( exp `  ( ( log `  (
1  +  ( _i  x.  A ) ) )  -  ( log `  ( 1  -  (
_i  x.  A )
) ) ) )  =  ( ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  /  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
46 eflog 23072 . . . . 5  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( exp `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  =  ( 1  +  ( _i  x.  A
) ) )
4730, 31, 46syl2anc 659 . . . 4  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  =  ( 1  +  ( _i  x.  A ) ) )
48 eflog 23072 . . . . 5  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  =  ( 1  -  ( _i  x.  A
) ) )
4926, 27, 48syl2anc 659 . . . 4  |-  ( A  e.  dom arctan  ->  ( exp `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( 1  -  ( _i  x.  A ) ) )
5047, 49oveq12d 6236 . . 3  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  / 
( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( ( 1  +  ( _i  x.  A ) )  /  ( 1  -  ( _i  x.  A
) ) ) )
51 negsub 9802 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  +  -u A )  =  ( _i  -  A ) )
525, 22, 51sylancr 661 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( _i  +  -u A )  =  ( _i  -  A
) )
536mulid1d 9546 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( _i  x.  1 )  =  _i )
5416oveq1i 6228 . . . . . . . . 9  |-  ( ( _i  x.  _i )  x.  A )  =  ( -u 1  x.  A )
556, 6, 22mulassd 9552 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  _i )  x.  A )  =  ( _i  x.  (
_i  x.  A )
) )
5622mulm1d 9948 . . . . . . . . 9  |-  ( A  e.  dom arctan  ->  ( -u
1  x.  A )  =  -u A )
5754, 55, 563eqtr3a 2461 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( _i  x.  A ) )  = 
-u A )
5853, 57oveq12d 6236 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  1 )  +  ( _i  x.  ( _i  x.  A
) ) )  =  ( _i  +  -u A ) )
596, 22, 6pnpcan2d 9904 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( _i  +  _i )  -  ( A  +  _i ) )  =  ( _i  -  A ) )
6052, 58, 593eqtr4d 2447 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  1 )  +  ( _i  x.  ( _i  x.  A
) ) )  =  ( ( _i  +  _i )  -  ( A  +  _i )
) )
6120a1i 11 . . . . . . 7  |-  ( A  e.  dom arctan  ->  1  e.  CC )
626, 61, 24adddid 9553 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( 1  +  ( _i  x.  A
) ) )  =  ( ( _i  x.  1 )  +  ( _i  x.  ( _i  x.  A ) ) ) )
6362timesd 10720 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 2  x.  _i )  =  ( _i  +  _i ) )
6463oveq1d 6233 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( 2  x.  _i )  -  ( A  +  _i ) )  =  ( ( _i  +  _i )  -  ( A  +  _i ) ) )
6560, 62, 643eqtr4d 2447 . . . . 5  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( 1  +  ( _i  x.  A
) ) )  =  ( ( 2  x.  _i )  -  ( A  +  _i )
) )
666, 61, 24subdid 9952 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( 1  -  ( _i  x.  A
) ) )  =  ( ( _i  x.  1 )  -  (
_i  x.  ( _i  x.  A ) ) ) )
6753, 57oveq12d 6236 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  1 )  -  ( _i  x.  ( _i  x.  A
) ) )  =  ( _i  -  -u A
) )
68 subneg 9803 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  -  -u A
)  =  ( _i  +  A ) )
695, 22, 68sylancr 661 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( _i 
-  -u A )  =  ( _i  +  A
) )
7067, 69eqtrd 2437 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  1 )  -  ( _i  x.  ( _i  x.  A
) ) )  =  ( _i  +  A
) )
71 addcom 9699 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  +  A
)  =  ( A  +  _i ) )
725, 22, 71sylancr 661 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( _i  +  A )  =  ( A  +  _i ) )
7366, 70, 723eqtrd 2441 . . . . 5  |-  ( A  e.  dom arctan  ->  ( _i  x.  ( 1  -  ( _i  x.  A
) ) )  =  ( A  +  _i ) )
7465, 73oveq12d 6236 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  ( 1  +  ( _i  x.  A ) ) )  /  ( _i  x.  ( 1  -  (
_i  x.  A )
) ) )  =  ( ( ( 2  x.  _i )  -  ( A  +  _i ) )  /  ( A  +  _i )
) )
75 ine0 9932 . . . . . 6  |-  _i  =/=  0
7675a1i 11 . . . . 5  |-  ( A  e.  dom arctan  ->  _i  =/=  0 )
7730, 26, 6, 27, 76divcan5d 10285 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( _i  x.  ( 1  +  ( _i  x.  A ) ) )  /  ( _i  x.  ( 1  -  (
_i  x.  A )
) ) )  =  ( ( 1  +  ( _i  x.  A
) )  /  (
1  -  ( _i  x.  A ) ) ) )
78 addcl 9507 . . . . . 6  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  +  _i )  e.  CC )
7922, 5, 78sylancl 660 . . . . 5  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  e.  CC )
80 subneg 9803 . . . . . . 7  |-  ( ( A  e.  CC  /\  _i  e.  CC )  -> 
( A  -  -u _i )  =  ( A  +  _i ) )
8122, 5, 80sylancl 660 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =  ( A  +  _i ) )
82 atandm 23346 . . . . . . . 8  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
8382simp2bi 1010 . . . . . . 7  |-  ( A  e.  dom arctan  ->  A  =/=  -u _i )
84 negicn 9756 . . . . . . . 8  |-  -u _i  e.  CC
85 subeq0 9780 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =  0  <->  A  =  -u _i ) )
8685necon3bid 2654 . . . . . . . 8  |-  ( ( A  e.  CC  /\  -u _i  e.  CC )  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
8722, 84, 86sylancl 660 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( ( A  -  -u _i )  =/=  0  <->  A  =/=  -u _i ) )
8883, 87mpbird 232 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( A  -  -u _i )  =/=  0 )
8981, 88eqnetrrd 2690 . . . . 5  |-  ( A  e.  dom arctan  ->  ( A  +  _i )  =/=  0 )
9037, 79, 79, 89divsubdird 10298 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  -  ( A  +  _i ) )  / 
( A  +  _i ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i )
)  -  ( ( A  +  _i )  /  ( A  +  _i ) ) ) )
9174, 77, 903eqtr3d 2445 . . 3  |-  ( A  e.  dom arctan  ->  ( ( 1  +  ( _i  x.  A ) )  /  ( 1  -  ( _i  x.  A
) ) )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  (
( A  +  _i )  /  ( A  +  _i ) ) ) )
9279, 89dividd 10257 . . . 4  |-  ( A  e.  dom arctan  ->  ( ( A  +  _i )  /  ( A  +  _i ) )  =  1 )
9392oveq2d 6234 . . 3  |-  ( A  e.  dom arctan  ->  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  (
( A  +  _i )  /  ( A  +  _i ) ) )  =  ( ( ( 2  x.  _i )  / 
( A  +  _i ) )  -  1 ) )
9450, 91, 933eqtrd 2441 . 2  |-  ( A  e.  dom arctan  ->  ( ( exp `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  / 
( exp `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 ) )
9543, 45, 943eqtrd 2441 1  |-  ( A  e.  dom arctan  ->  ( exp `  ( 2  x.  (
_i  x.  (arctan `  A
) ) ) )  =  ( ( ( 2  x.  _i )  /  ( A  +  _i ) )  -  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836    =/= wne 2591   dom cdm 4930   ` cfv 5513  (class class class)co 6218   CCcc 9423   0cc0 9425   1c1 9426   _ici 9427    + caddc 9428    x. cmul 9430    - cmin 9740   -ucneg 9741    / cdiv 10145   2c2 10524   expce 13822   logclog 23050  arctancatan 23334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-inf2 7994  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-pre-sup 9503  ax-addf 9504  ax-mulf 9505
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-se 4770  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-isom 5522  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-of 6461  df-om 6622  df-1st 6721  df-2nd 6722  df-supp 6840  df-recs 6982  df-rdg 7016  df-1o 7070  df-2o 7071  df-oadd 7074  df-er 7251  df-map 7362  df-pm 7363  df-ixp 7411  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-fsupp 7767  df-fi 7808  df-sup 7838  df-oi 7872  df-card 8255  df-cda 8483  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-div 10146  df-nn 10475  df-2 10533  df-3 10534  df-4 10535  df-5 10536  df-6 10537  df-7 10538  df-8 10539  df-9 10540  df-10 10541  df-n0 10735  df-z 10804  df-dec 10918  df-uz 11024  df-q 11124  df-rp 11162  df-xneg 11261  df-xadd 11262  df-xmul 11263  df-ioo 11476  df-ioc 11477  df-ico 11478  df-icc 11479  df-fz 11616  df-fzo 11740  df-fl 11851  df-mod 11920  df-seq 12034  df-exp 12093  df-fac 12279  df-bc 12306  df-hash 12331  df-shft 12925  df-cj 12957  df-re 12958  df-im 12959  df-sqrt 13093  df-abs 13094  df-limsup 13319  df-clim 13336  df-rlim 13337  df-sum 13534  df-ef 13828  df-sin 13830  df-cos 13831  df-pi 13833  df-struct 14659  df-ndx 14660  df-slot 14661  df-base 14662  df-sets 14663  df-ress 14664  df-plusg 14738  df-mulr 14739  df-starv 14740  df-sca 14741  df-vsca 14742  df-ip 14743  df-tset 14744  df-ple 14745  df-ds 14747  df-unif 14748  df-hom 14749  df-cco 14750  df-rest 14853  df-topn 14854  df-0g 14872  df-gsum 14873  df-topgen 14874  df-pt 14875  df-prds 14878  df-xrs 14932  df-qtop 14937  df-imas 14938  df-xps 14940  df-mre 15016  df-mrc 15017  df-acs 15019  df-mgm 16012  df-sgrp 16051  df-mnd 16061  df-submnd 16107  df-mulg 16200  df-cntz 16495  df-cmn 16940  df-psmet 18547  df-xmet 18548  df-met 18549  df-bl 18550  df-mopn 18551  df-fbas 18552  df-fg 18553  df-cnfld 18557  df-top 19507  df-bases 19509  df-topon 19510  df-topsp 19511  df-cld 19628  df-ntr 19629  df-cls 19630  df-nei 19708  df-lp 19746  df-perf 19747  df-cn 19837  df-cnp 19838  df-haus 19925  df-tx 20171  df-hmeo 20364  df-fil 20455  df-fm 20547  df-flim 20548  df-flf 20549  df-xms 20931  df-ms 20932  df-tms 20933  df-cncf 21490  df-limc 22378  df-dv 22379  df-log 23052  df-atan 23337
This theorem is referenced by:  tanatan  23389
  Copyright terms: Public domain W3C validator