Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Unicode version

Theorem 2dim 33137
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j  |-  .\/  =  ( join `  K )
2dim.c  |-  C  =  (  <o  `  K )
2dim.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2dim  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) )
Distinct variable groups:    r, q, A    .\/ , q, r    K, q, r    P, q, r
Allowed substitution hints:    C( r, q)

Proof of Theorem 2dim
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3  |-  .\/  =  ( join `  K )
2 eqid 2443 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 2dim.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 33dim1 33134 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) ) )
5 df-3an 967 . . . . . . . 8  |-  ( ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <-> 
( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
65rexbii 2759 . . . . . . 7  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <->  E. s  e.  A  ( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
7 r19.42v 2894 . . . . . . 7  |-  ( E. s  e.  A  ( ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q ) )  /\  -.  s
( le `  K
) ( ( P 
.\/  q )  .\/  r ) )  <->  ( ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q ) )  /\  E. s  e.  A  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) ) )
86, 7bitri 249 . . . . . 6  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <-> 
( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  E. s  e.  A  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
98simplbi 460 . . . . 5  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) ) )
10 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  K  e.  HL )
11 hlatl 33028 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1210, 11syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  K  e.  AtLat )
13 simplr 754 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  q  e.  A )
14 simpllr 758 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  P  e.  A )
152, 3atncmp 32980 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  q  e.  A  /\  P  e.  A )  ->  ( -.  q ( le `  K ) P  <->  q  =/=  P ) )
1612, 13, 14, 15syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  q ( le `  K ) P  <->  q  =/=  P ) )
17 necom 2634 . . . . . . . 8  |-  ( q  =/=  P  <->  P  =/=  q )
1816, 17syl6rbb 262 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  =/=  q  <->  -.  q
( le `  K
) P ) )
19 eqid 2443 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
2019, 3atbase 32957 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2114, 20syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  P  e.  ( Base `  K
) )
22 2dim.c . . . . . . . . 9  |-  C  =  (  <o  `  K )
2319, 2, 1, 22, 3cvr1 33077 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  q  e.  A )  ->  ( -.  q ( le `  K ) P  <->  P C
( P  .\/  q
) ) )
2410, 21, 13, 23syl3anc 1218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  q ( le `  K ) P  <->  P C
( P  .\/  q
) ) )
2518, 24bitrd 253 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  =/=  q  <->  P C
( P  .\/  q
) ) )
2619, 1, 3hlatjcl 33034 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  q  e.  A )  ->  ( P  .\/  q
)  e.  ( Base `  K ) )
2710, 14, 13, 26syl3anc 1218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  .\/  q )  e.  ( Base `  K
) )
28 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  r  e.  A )
2919, 2, 1, 22, 3cvr1 33077 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  .\/  q )  e.  ( Base `  K
)  /\  r  e.  A )  ->  ( -.  r ( le `  K ) ( P 
.\/  q )  <->  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) )
3010, 27, 28, 29syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  r ( le `  K ) ( P 
.\/  q )  <->  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) )
3125, 30anbi12d 710 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  (
( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q ) )  <->  ( P C ( P  .\/  q
)  /\  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) ) )
329, 31syl5ib 219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) )  ->  ( P C ( P  .\/  q )  /\  ( P  .\/  q ) C ( ( P  .\/  q )  .\/  r
) ) ) )
3332reximdva 2847 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A
)  ->  ( E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) ) )
3433reximdva 2847 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) ) )
354, 34mpd 15 1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620   E.wrex 2735   class class class wbr 4311   ` cfv 5437  (class class class)co 6110   Basecbs 14193   lecple 14264   joincjn 15133    <o ccvr 32930   Atomscatm 32931   AtLatcal 32932   HLchlt 33018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-poset 15135  df-plt 15147  df-lub 15163  df-glb 15164  df-join 15165  df-meet 15166  df-p0 15228  df-p1 15229  df-lat 15235  df-clat 15297  df-oposet 32844  df-ol 32846  df-oml 32847  df-covers 32934  df-ats 32935  df-atl 32966  df-cvlat 32990  df-hlat 33019
This theorem is referenced by:  1dimN  33138  1cvratex  33140
  Copyright terms: Public domain W3C validator