Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Unicode version

Theorem 2dim 32947
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j  |-  .\/  =  ( join `  K )
2dim.c  |-  C  =  (  <o  `  K )
2dim.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2dim  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) )
Distinct variable groups:    r, q, A    .\/ , q, r    K, q, r    P, q, r
Allowed substitution hints:    C( r, q)

Proof of Theorem 2dim
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3  |-  .\/  =  ( join `  K )
2 eqid 2428 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 2dim.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 33dim1 32944 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) ) )
5 df-3an 984 . . . . . . . 8  |-  ( ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <-> 
( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
65rexbii 2866 . . . . . . 7  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <->  E. s  e.  A  ( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
7 r19.42v 2922 . . . . . . 7  |-  ( E. s  e.  A  ( ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q ) )  /\  -.  s
( le `  K
) ( ( P 
.\/  q )  .\/  r ) )  <->  ( ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q ) )  /\  E. s  e.  A  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) ) )
86, 7bitri 252 . . . . . 6  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  <-> 
( ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) )  /\  E. s  e.  A  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) ) )
98simplbi 461 . . . . 5  |-  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q ) ) )
10 simplll 766 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  K  e.  HL )
11 hlatl 32838 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
1210, 11syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  K  e.  AtLat )
13 simplr 760 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  q  e.  A )
14 simpllr 767 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  P  e.  A )
152, 3atncmp 32790 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  q  e.  A  /\  P  e.  A )  ->  ( -.  q ( le `  K ) P  <->  q  =/=  P ) )
1612, 13, 14, 15syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  q ( le `  K ) P  <->  q  =/=  P ) )
17 necom 2654 . . . . . . . 8  |-  ( q  =/=  P  <->  P  =/=  q )
1816, 17syl6rbb 265 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  =/=  q  <->  -.  q
( le `  K
) P ) )
19 eqid 2428 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
2019, 3atbase 32767 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2114, 20syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  P  e.  ( Base `  K
) )
22 2dim.c . . . . . . . . 9  |-  C  =  (  <o  `  K )
2319, 2, 1, 22, 3cvr1 32887 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  q  e.  A )  ->  ( -.  q ( le `  K ) P  <->  P C
( P  .\/  q
) ) )
2410, 21, 13, 23syl3anc 1264 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  q ( le `  K ) P  <->  P C
( P  .\/  q
) ) )
2518, 24bitrd 256 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  =/=  q  <->  P C
( P  .\/  q
) ) )
2619, 1, 3hlatjcl 32844 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  q  e.  A )  ->  ( P  .\/  q
)  e.  ( Base `  K ) )
2710, 14, 13, 26syl3anc 1264 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( P  .\/  q )  e.  ( Base `  K
) )
28 simpr 462 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  r  e.  A )
2919, 2, 1, 22, 3cvr1 32887 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  .\/  q )  e.  ( Base `  K
)  /\  r  e.  A )  ->  ( -.  r ( le `  K ) ( P 
.\/  q )  <->  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) )
3010, 27, 28, 29syl3anc 1264 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( -.  r ( le `  K ) ( P 
.\/  q )  <->  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) )
3125, 30anbi12d 715 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  (
( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q ) )  <->  ( P C ( P  .\/  q
)  /\  ( P  .\/  q ) C ( ( P  .\/  q
)  .\/  r )
) ) )
329, 31syl5ib 222 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A )  /\  r  e.  A )  ->  ( E. s  e.  A  ( P  =/=  q  /\  -.  r ( le
`  K ) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q )  .\/  r
) )  ->  ( P C ( P  .\/  q )  /\  ( P  .\/  q ) C ( ( P  .\/  q )  .\/  r
) ) ) )
3332reximdva 2839 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A )  /\  q  e.  A
)  ->  ( E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r ( le `  K ) ( P 
.\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) ) )
3433reximdva 2839 . 2  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( E. q  e.  A  E. r  e.  A  E. s  e.  A  ( P  =/=  q  /\  -.  r
( le `  K
) ( P  .\/  q )  /\  -.  s ( le `  K ) ( ( P  .\/  q ) 
.\/  r ) )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) ) )
354, 34mpd 15 1  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  E. q  e.  A  E. r  e.  A  ( P C ( P 
.\/  q )  /\  ( P  .\/  q ) C ( ( P 
.\/  q )  .\/  r ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   E.wrex 2715   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   Basecbs 15064   lecple 15140   joincjn 16132    <o ccvr 32740   Atomscatm 32741   AtLatcal 32742   HLchlt 32828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-preset 16116  df-poset 16134  df-plt 16147  df-lub 16163  df-glb 16164  df-join 16165  df-meet 16166  df-p0 16228  df-p1 16229  df-lat 16235  df-clat 16297  df-oposet 32654  df-ol 32656  df-oml 32657  df-covers 32744  df-ats 32745  df-atl 32776  df-cvlat 32800  df-hlat 32829
This theorem is referenced by:  1dimN  32948  1cvratex  32950
  Copyright terms: Public domain W3C validator