Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atmat0 Structured version   Unicode version

Theorem 2atmat0 34990
Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
2atmatz.j  |-  .\/  =  ( join `  K )
2atmatz.m  |-  ./\  =  ( meet `  K )
2atmatz.z  |-  .0.  =  ( 0. `  K )
2atmatz.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2atmat0  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )

Proof of Theorem 2atmat0
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
2 simpr1 1003 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  R  e.  A )
3 simpr2 1004 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  S  e.  A )
43orcd 392 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( S  e.  A  \/  S  =  .0.  ) )
5 simpr3 1005 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( P  .\/  Q )  =/=  ( R  .\/  S ) )
6 2atmatz.j . . 3  |-  .\/  =  ( join `  K )
7 2atmatz.m . . 3  |-  ./\  =  ( meet `  K )
8 2atmatz.z . . 3  |-  .0.  =  ( 0. `  K )
9 2atmatz.a . . 3  |-  A  =  ( Atoms `  K )
106, 7, 8, 92at0mat0 34989 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
111, 2, 4, 5, 10syl13anc 1231 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   ` cfv 5578  (class class class)co 6281   joincjn 15447   meetcmee 15448   0.cp0 15541   Atomscatm 34728   HLchlt 34815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-preset 15431  df-poset 15449  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34641  df-ol 34643  df-oml 34644  df-covers 34731  df-ats 34732  df-atl 34763  df-cvlat 34787  df-hlat 34816  df-llines 34962
This theorem is referenced by:  2atm  34991  trlval3  35652  cdleme22b  35807  cdlemg31b0N  36160  cdlemh  36283
  Copyright terms: Public domain W3C validator