Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2atlt Structured version   Unicode version

Theorem 2atlt 33406
Description: Given an atom less than an element, there is another atom less than the element. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
2atomslt.b  |-  B  =  ( Base `  K
)
2atomslt.s  |-  .<  =  ( lt `  K )
2atomslt.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2atlt  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<  X ) )
Distinct variable groups:    A, q    B, q    K, q    P, q    .< , q    X, q

Proof of Theorem 2atlt
StepHypRef Expression
1 2atomslt.b . . . 4  |-  B  =  ( Base `  K
)
2 2atomslt.a . . . 4  |-  A  =  ( Atoms `  K )
31, 2atbase 33257 . . 3  |-  ( P  e.  A  ->  P  e.  B )
4 eqid 2454 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
5 2atomslt.s . . . 4  |-  .<  =  ( lt `  K )
6 eqid 2454 . . . 4  |-  ( join `  K )  =  (
join `  K )
71, 4, 5, 6, 2hlrelat 33369 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  B  /\  X  e.  B )  /\  P  .<  X )  ->  E. q  e.  A  ( P  .<  ( P ( join `  K
) q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )
83, 7syl3anl2 1268 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  ->  E. q  e.  A  ( P  .<  ( P ( join `  K
) q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )
9 simp3l 1016 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  P  .<  ( P (
join `  K )
q ) )
10 simp1l1 1081 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  K  e.  HL )
11 simp1l2 1082 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  P  e.  A )
12 simp2 989 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  e.  A )
13 eqid 2454 . . . . . . . . . 10  |-  (  <o  `  K )  =  ( 
<o  `  K )
145, 6, 2, 13atltcvr 33402 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  P  e.  A  /\  q  e.  A
) )  ->  ( P  .<  ( P (
join `  K )
q )  <->  P (  <o  `  K ) ( P ( join `  K
) q ) ) )
1510, 11, 11, 12, 14syl13anc 1221 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( P  .<  ( P ( join `  K
) q )  <->  P (  <o  `  K ) ( P ( join `  K
) q ) ) )
169, 15mpbid 210 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  P (  <o  `  K
) ( P (
join `  K )
q ) )
176, 13, 2atcvr1 33384 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  q  e.  A )  ->  ( P  =/=  q  <->  P (  <o  `  K )
( P ( join `  K ) q ) ) )
1810, 11, 12, 17syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( P  =/=  q  <->  P (  <o  `  K )
( P ( join `  K ) q ) ) )
1916, 18mpbird 232 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  P  =/=  q )
2019necomd 2722 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  =/=  P )
215, 6, 2atlt 33404 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  q  e.  A  /\  P  e.  A )  ->  ( q  .<  (
q ( join `  K
) P )  <->  q  =/=  P ) )
2210, 12, 11, 21syl3anc 1219 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( q  .<  (
q ( join `  K
) P )  <->  q  =/=  P ) )
2320, 22mpbird 232 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  .<  ( q (
join `  K ) P ) )
24 hllat 33331 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
2510, 24syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  K  e.  Lat )
2611, 3syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  P  e.  B )
271, 2atbase 33257 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  B )
28273ad2ant2 1010 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  e.  B )
291, 6latjcom 15347 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  q  e.  B )  ->  ( P ( join `  K ) q )  =  ( q (
join `  K ) P ) )
3025, 26, 28, 29syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( P ( join `  K ) q )  =  ( q (
join `  K ) P ) )
3123, 30breqtrrd 4425 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  .<  ( P (
join `  K )
q ) )
32 simp3r 1017 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( P ( join `  K ) q ) ( le `  K
) X )
33 hlpos 33333 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Poset )
3410, 33syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  K  e.  Poset )
351, 6latjcl 15339 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  q  e.  B )  ->  ( P ( join `  K ) q )  e.  B )
3625, 26, 28, 35syl3anc 1219 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( P ( join `  K ) q )  e.  B )
37 simp1l3 1083 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  ->  X  e.  B )
381, 4, 5pltletr 15259 . . . . . . 7  |-  ( ( K  e.  Poset  /\  (
q  e.  B  /\  ( P ( join `  K
) q )  e.  B  /\  X  e.  B ) )  -> 
( ( q  .< 
( P ( join `  K ) q )  /\  ( P (
join `  K )
q ) ( le
`  K ) X )  ->  q  .<  X ) )
3934, 28, 36, 37, 38syl13anc 1221 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( ( q  .< 
( P ( join `  K ) q )  /\  ( P (
join `  K )
q ) ( le
`  K ) X )  ->  q  .<  X ) )
4031, 32, 39mp2and 679 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
q  .<  X )
4120, 40jca 532 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  /\  q  e.  A  /\  ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X ) )  -> 
( q  =/=  P  /\  q  .<  X ) )
42413exp 1187 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  ->  ( q  e.  A  ->  ( ( P  .<  ( P (
join `  K )
q )  /\  ( P ( join `  K
) q ) ( le `  K ) X )  ->  (
q  =/=  P  /\  q  .<  X ) ) ) )
4342reximdvai 2930 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  ->  ( E. q  e.  A  ( P  .<  ( P ( join `  K ) q )  /\  ( P (
join `  K )
q ) ( le
`  K ) X )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<  X ) ) )
448, 43mpd 15 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  X  e.  B )  /\  P  .<  X )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2647   E.wrex 2799   class class class wbr 4399   ` cfv 5525  (class class class)co 6199   Basecbs 14291   lecple 14363   Posetcpo 15228   ltcplt 15229   joincjn 15232   Latclat 15333    <o ccvr 33230   Atomscatm 33231   HLchlt 33318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-poset 15234  df-plt 15246  df-lub 15262  df-glb 15263  df-join 15264  df-meet 15265  df-p0 15327  df-lat 15334  df-clat 15396  df-oposet 33144  df-ol 33146  df-oml 33147  df-covers 33234  df-ats 33235  df-atl 33266  df-cvlat 33290  df-hlat 33319
This theorem is referenced by:  cdlemb  33761  lhpexle1  33975
  Copyright terms: Public domain W3C validator