Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stmbfm Structured version   Unicode version

Theorem 1stmbfm 29077
Description: The first projection map is measurable with regard to the product sigma algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
1stmbfm.2  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
Assertion
Ref Expression
1stmbfm  |-  ( ph  ->  ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM S ) )

Proof of Theorem 1stmbfm
Dummy variables  z 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 6825 . . . 4  |-  ( 1st  |`  ( U. S  X.  U. T ) ) : ( U. S  X.  U. T ) --> U. S
2 1stmbfm.1 . . . . . 6  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
3 1stmbfm.2 . . . . . 6  |-  ( ph  ->  T  e.  U. ran sigAlgebra )
4 sxuni 29010 . . . . . 6  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( U. S  X.  U. T )  =  U. ( S ×s  T ) )
52, 3, 4syl2anc 665 . . . . 5  |-  ( ph  ->  ( U. S  X.  U. T )  =  U. ( S ×s  T ) )
65feq2d 5729 . . . 4  |-  ( ph  ->  ( ( 1st  |`  ( U. S  X.  U. T
) ) : ( U. S  X.  U. T ) --> U. S  <->  ( 1st  |`  ( U. S  X.  U. T ) ) : U. ( S ×s  T ) --> U. S
) )
71, 6mpbii 214 . . 3  |-  ( ph  ->  ( 1st  |`  ( U. S  X.  U. T
) ) : U. ( S ×s  T ) --> U. S
)
8 unielsiga 28945 . . . . 5  |-  ( S  e.  U. ran sigAlgebra  ->  U. S  e.  S )
92, 8syl 17 . . . 4  |-  ( ph  ->  U. S  e.  S
)
10 sxsiga 29008 . . . . . 6  |-  ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  -> 
( S ×s  T )  e.  U. ran sigAlgebra )
112, 3, 10syl2anc 665 . . . . 5  |-  ( ph  ->  ( S ×s  T )  e.  U. ran sigAlgebra )
12 unielsiga 28945 . . . . 5  |-  ( ( S ×s  T )  e.  U. ran sigAlgebra 
->  U. ( S ×s  T )  e.  ( S ×s  T ) )
1311, 12syl 17 . . . 4  |-  ( ph  ->  U. ( S ×s  T )  e.  ( S ×s  T ) )
149, 13elmapd 7490 . . 3  |-  ( ph  ->  ( ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( U. S  ^m  U. ( S ×s  T ) )  <->  ( 1st  |`  ( U. S  X.  U. T ) ) : U. ( S ×s  T ) --> U. S ) )
157, 14mpbird 235 . 2  |-  ( ph  ->  ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( U. S  ^m  U. ( S ×s  T ) ) )
16 sgon 28941 . . . . . . . . . . 11  |-  ( S  e.  U. ran sigAlgebra  ->  S  e.  (sigAlgebra `  U. S ) )
17 sigasspw 28933 . . . . . . . . . . 11  |-  ( S  e.  (sigAlgebra `  U. S )  ->  S  C_  ~P U. S )
18 pwssb 4386 . . . . . . . . . . . 12  |-  ( S 
C_  ~P U. S  <->  A. a  e.  S  a  C_  U. S )
1918biimpi 197 . . . . . . . . . . 11  |-  ( S 
C_  ~P U. S  ->  A. a  e.  S  a  C_  U. S )
202, 16, 17, 194syl 19 . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  S  a  C_  U. S )
2120r19.21bi 2794 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  a  C_ 
U. S )
22 xpss1 4958 . . . . . . . . 9  |-  ( a 
C_  U. S  ->  (
a  X.  U. T
)  C_  ( U. S  X.  U. T ) )
2321, 22syl 17 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
a  X.  U. T
)  C_  ( U. S  X.  U. T ) )
2423sseld 3463 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  (
z  e.  ( a  X.  U. T )  ->  z  e.  ( U. S  X.  U. T ) ) )
2524pm4.71rd 639 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
z  e.  ( a  X.  U. T )  <-> 
( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( a  X.  U. T ) ) ) )
26 ffn 5742 . . . . . . . 8  |-  ( ( 1st  |`  ( U. S  X.  U. T ) ) : ( U. S  X.  U. T ) --> U. S  ->  ( 1st  |`  ( U. S  X.  U. T ) )  Fn  ( U. S  X.  U. T ) )
27 elpreima 6013 . . . . . . . 8  |-  ( ( 1st  |`  ( U. S  X.  U. T ) )  Fn  ( U. S  X.  U. T )  ->  ( z  e.  ( `' ( 1st  |`  ( U. S  X.  U. T ) ) "
a )  <->  ( z  e.  ( U. S  X.  U. T )  /\  (
( 1st  |`  ( U. S  X.  U. T ) ) `  z )  e.  a ) ) )
281, 26, 27mp2b 10 . . . . . . 7  |-  ( z  e.  ( `' ( 1st  |`  ( U. S  X.  U. T ) ) " a )  <-> 
( z  e.  ( U. S  X.  U. T )  /\  (
( 1st  |`  ( U. S  X.  U. T ) ) `  z )  e.  a ) )
29 fvres 5891 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( 1st  |`  ( U. S  X.  U. T
) ) `  z
)  =  ( 1st `  z ) )
3029eleq1d 2491 . . . . . . . . 9  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( ( 1st  |`  ( U. S  X.  U. T ) ) `  z )  e.  a  <-> 
( 1st `  z
)  e.  a ) )
31 1st2nd2 6840 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
32 xp2nd 6834 . . . . . . . . . 10  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( 2nd `  z
)  e.  U. T
)
33 elxp6 6835 . . . . . . . . . . . 12  |-  ( z  e.  ( a  X. 
U. T )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  a  /\  ( 2nd `  z )  e.  U. T ) ) )
34 anass 653 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  a )  /\  ( 2nd `  z )  e.  U. T )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  a  /\  ( 2nd `  z )  e.  U. T ) ) )
35 an32 805 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  a )  /\  ( 2nd `  z )  e.  U. T )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  U. T )  /\  ( 1st `  z )  e.  a ) )
3633, 34, 353bitr2i 276 . . . . . . . . . . 11  |-  ( z  e.  ( a  X. 
U. T )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  U. T )  /\  ( 1st `  z )  e.  a ) )
3736baib 911 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  U. T )  ->  (
z  e.  ( a  X.  U. T )  <-> 
( 1st `  z
)  e.  a ) )
3831, 32, 37syl2anc 665 . . . . . . . . 9  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( z  e.  ( a  X.  U. T
)  <->  ( 1st `  z
)  e.  a ) )
3930, 38bitr4d 259 . . . . . . . 8  |-  ( z  e.  ( U. S  X.  U. T )  -> 
( ( ( 1st  |`  ( U. S  X.  U. T ) ) `  z )  e.  a  <-> 
z  e.  ( a  X.  U. T ) ) )
4039pm5.32i 641 . . . . . . 7  |-  ( ( z  e.  ( U. S  X.  U. T )  /\  ( ( 1st  |`  ( U. S  X.  U. T ) ) `  z )  e.  a )  <->  ( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( a  X.  U. T ) ) )
4128, 40bitri 252 . . . . . 6  |-  ( z  e.  ( `' ( 1st  |`  ( U. S  X.  U. T ) ) " a )  <-> 
( z  e.  ( U. S  X.  U. T )  /\  z  e.  ( a  X.  U. T ) ) )
4225, 41syl6rbbr 267 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  (
z  e.  ( `' ( 1st  |`  ( U. S  X.  U. T
) ) " a
)  <->  z  e.  ( a  X.  U. T
) ) )
4342eqrdv 2419 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  ( `' ( 1st  |`  ( U. S  X.  U. T
) ) " a
)  =  ( a  X.  U. T ) )
442adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  S  e.  U. ran sigAlgebra )
453adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  T  e.  U. ran sigAlgebra )
46 simpr 462 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
47 eqid 2422 . . . . . . . 8  |-  U. T  =  U. T
48 issgon 28940 . . . . . . . . 9  |-  ( T  e.  (sigAlgebra `  U. T )  <-> 
( T  e.  U. ran sigAlgebra  /\  U. T  =  U. T ) )
4948biimpri 209 . . . . . . . 8  |-  ( ( T  e.  U. ran sigAlgebra  /\  U. T  =  U. T
)  ->  T  e.  (sigAlgebra `
 U. T ) )
503, 47, 49sylancl 666 . . . . . . 7  |-  ( ph  ->  T  e.  (sigAlgebra `  U. T ) )
51 baselsiga 28932 . . . . . . 7  |-  ( T  e.  (sigAlgebra `  U. T )  ->  U. T  e.  T
)
5250, 51syl 17 . . . . . 6  |-  ( ph  ->  U. T  e.  T
)
5352adantr 466 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  U. T  e.  T )
54 elsx 29011 . . . . 5  |-  ( ( ( S  e.  U. ran sigAlgebra  /\  T  e.  U. ran sigAlgebra )  /\  ( a  e.  S  /\  U. T  e.  T ) )  -> 
( a  X.  U. T )  e.  ( S ×s  T ) )
5544, 45, 46, 53, 54syl22anc 1265 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  (
a  X.  U. T
)  e.  ( S ×s  T ) )
5643, 55eqeltrd 2510 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  ( `' ( 1st  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) )
5756ralrimiva 2839 . 2  |-  ( ph  ->  A. a  e.  S  ( `' ( 1st  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) )
5811, 2ismbfm 29069 . 2  |-  ( ph  ->  ( ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM S )  <-> 
( ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( U. S  ^m  U. ( S ×s  T ) )  /\  A. a  e.  S  ( `' ( 1st  |`  ( U. S  X.  U. T
) ) " a
)  e.  ( S ×s  T ) ) ) )
5915, 57, 58mpbir2and 930 1  |-  ( ph  ->  ( 1st  |`  ( U. S  X.  U. T
) )  e.  ( ( S ×s  T )MblFnM S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775    C_ wss 3436   ~Pcpw 3979   <.cop 4002   U.cuni 4216    X. cxp 4847   `'ccnv 4848   ran crn 4850    |` cres 4851   "cima 4852    Fn wfn 5592   -->wf 5593   ` cfv 5597  (class class class)co 6301   1stc1st 6801   2ndc2nd 6802    ^m cmap 7476  sigAlgebracsiga 28924   ×s csx 29005  MblFnMcmbfm 29067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-1st 6803  df-2nd 6804  df-map 7478  df-siga 28925  df-sigagen 28956  df-sx 29006  df-mbfm 29068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator