MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfcl Structured version   Unicode version

Theorem 1stfcl 15003
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t  |-  T  =  ( C  X.c  D )
1stfcl.c  |-  ( ph  ->  C  e.  Cat )
1stfcl.d  |-  ( ph  ->  D  e.  Cat )
1stfcl.p  |-  P  =  ( C  1stF  D )
Assertion
Ref Expression
1stfcl  |-  ( ph  ->  P  e.  ( T 
Func  C ) )

Proof of Theorem 1stfcl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4  |-  T  =  ( C  X.c  D )
2 eqid 2441 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2441 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
41, 2, 3xpcbas 14984 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
5 eqid 2441 . . . 4  |-  ( Hom  `  T )  =  ( Hom  `  T )
6 1stfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 1stfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 1stfcl.p . . . 4  |-  P  =  ( C  1stF  D )
91, 4, 5, 6, 7, 81stfval 14997 . . 3  |-  ( ph  ->  P  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
>. )
10 fo1st 6595 . . . . . . . 8  |-  1st : _V -onto-> _V
11 fofun 5618 . . . . . . . 8  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
1210, 11ax-mp 5 . . . . . . 7  |-  Fun  1st
13 fvex 5698 . . . . . . . 8  |-  ( Base `  C )  e.  _V
14 fvex 5698 . . . . . . . 8  |-  ( Base `  D )  e.  _V
1513, 14xpex 6507 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  e.  _V
16 resfunexg 5940 . . . . . . 7  |-  ( ( Fun  1st  /\  (
( Base `  C )  X.  ( Base `  D
) )  e.  _V )  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) )  e. 
_V )
1712, 15, 16mp2an 667 . . . . . 6  |-  ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) )  e.  _V
1815, 15mpt2ex 6649 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  e.  _V
1917, 18op2ndd 6587 . . . . 5  |-  ( P  =  <. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) ) >.  ->  ( 2nd `  P )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) ) )
209, 19syl 16 . . . 4  |-  ( ph  ->  ( 2nd `  P
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) ) )
2120opeq2d 4063 . . 3  |-  ( ph  -> 
<. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
>. )
229, 21eqtr4d 2476 . 2  |-  ( ph  ->  P  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( 2nd `  P ) >. )
23 eqid 2441 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
24 eqid 2441 . . . 4  |-  ( Id
`  T )  =  ( Id `  T
)
25 eqid 2441 . . . 4  |-  ( Id
`  C )  =  ( Id `  C
)
26 eqid 2441 . . . 4  |-  (comp `  T )  =  (comp `  T )
27 eqid 2441 . . . 4  |-  (comp `  C )  =  (comp `  C )
281, 6, 7xpccat 14996 . . . 4  |-  ( ph  ->  T  e.  Cat )
29 f1stres 6597 . . . . 5  |-  ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  C
)
3029a1i 11 . . . 4  |-  ( ph  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  C )
)
31 eqid 2441 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) )
32 ovex 6115 . . . . . . 7  |-  ( x ( Hom  `  T
) y )  e. 
_V
33 resfunexg 5940 . . . . . . 7  |-  ( ( Fun  1st  /\  (
x ( Hom  `  T
) y )  e. 
_V )  ->  ( 1st  |`  ( x ( Hom  `  T )
y ) )  e. 
_V )
3412, 32, 33mp2an 667 . . . . . 6  |-  ( 1st  |`  ( x ( Hom  `  T ) y ) )  e.  _V
3531, 34fnmpt2i 6642 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  Fn  ( ( (
Base `  C )  X.  ( Base `  D
) )  X.  (
( Base `  C )  X.  ( Base `  D
) ) )
3620fneq1d 5498 . . . . 5  |-  ( ph  ->  ( ( 2nd `  P
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) ) )
3735, 36mpbiri 233 . . . 4  |-  ( ph  ->  ( 2nd `  P
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
38 f1stres 6597 . . . . . 6  |-  ( 1st  |`  ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )
396adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  C  e.  Cat )
407adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  D  e.  Cat )
41 simprl 750 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
42 simprr 751 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
431, 4, 5, 39, 40, 8, 41, 421stf2 14999 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y )  =  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
44 eqid 2441 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
451, 4, 23, 44, 5, 41, 42xpchom 14986 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( Hom  `  T )
y )  =  ( ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) )
4645reseq2d 5106 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( 1st  |`  (
x ( Hom  `  T
) y ) )  =  ( 1st  |`  (
( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) )
4743, 46eqtrd 2473 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y )  =  ( 1st  |`  ( (
( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) )
4847feq1d 5543 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  P
) y ) : ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  <->  ( 1st  |`  ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) ) )
4938, 48mpbiri 233 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y ) : ( ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) )
50 fvres 5701 . . . . . . . 8  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
5150ad2antrl 722 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
52 fvres 5701 . . . . . . . 8  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 1st `  y
) )
5352ad2antll 723 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 1st `  y
) )
5451, 53oveq12d 6108 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ( Hom  `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) )
5545, 54feq23d 5551 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  P
) y ) : ( x ( Hom  `  T ) y ) --> ( ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x ) ( Hom  `  C )
( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  <->  ( x
( 2nd `  P
) y ) : ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) ) )
5649, 55mpbird 232 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y ) : ( x ( Hom  `  T
) y ) --> ( ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ( Hom  `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) ) )
5728adantr 462 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  T  e.  Cat )
58 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
594, 5, 24, 57, 58catidcl 14616 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  e.  ( x ( Hom  `  T
) x ) )
60 fvres 5701 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  e.  ( x ( Hom  `  T ) x )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 1st `  (
( Id `  T
) `  x )
) )
6159, 60syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 1st `  (
( Id `  T
) `  x )
) )
62 1st2nd2 6612 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6362adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6463fveq2d 5692 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  ( ( Id `  T
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
656adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  C  e.  Cat )
667adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  D  e.  Cat )
67 eqid 2441 . . . . . . . . 9  |-  ( Id
`  D )  =  ( Id `  D
)
68 xp1st 6605 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
6968adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
70 xp2nd 6606 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
7170adantl 463 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
721, 65, 66, 2, 3, 25, 67, 24, 69, 71xpcid 14995 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >. )
7364, 72eqtrd 2473 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `  ( 2nd `  x ) )
>. )
74 fvex 5698 . . . . . . . 8  |-  ( ( Id `  C ) `
 ( 1st `  x
) )  e.  _V
75 fvex 5698 . . . . . . . 8  |-  ( ( Id `  D ) `
 ( 2nd `  x
) )  e.  _V
7674, 75op1std 6586 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >.  ->  ( 1st `  ( ( Id
`  T ) `  x ) )  =  ( ( Id `  C ) `  ( 1st `  x ) ) )
7773, 76syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  (
( Id `  T
) `  x )
)  =  ( ( Id `  C ) `
 ( 1st `  x
) ) )
7861, 77eqtrd 2473 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( ( Id
`  C ) `  ( 1st `  x ) ) )
791, 4, 5, 65, 66, 8, 58, 581stf2 14999 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( x ( 2nd `  P ) x )  =  ( 1st  |`  ( x
( Hom  `  T ) x ) ) )
8079fveq1d 5690 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  P
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( 1st  |`  (
x ( Hom  `  T
) x ) ) `
 ( ( Id
`  T ) `  x ) ) )
8150adantl 463 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
8281fveq2d 5692 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  C ) `  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) )  =  ( ( Id `  C ) `  ( 1st `  x ) ) )
8378, 80, 823eqtr4d 2483 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  P
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( Id `  C
) `  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x ) ) )
84283ad2ant1 1004 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  T  e.  Cat )
85 simp21 1016 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
86 simp22 1017 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
87 simp23 1018 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
88 simp3l 1011 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  f  e.  ( x ( Hom  `  T ) y ) )
89 simp3r 1012 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  g  e.  ( y ( Hom  `  T ) z ) )
904, 5, 26, 84, 85, 86, 87, 88, 89catcocl 14619 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  T )
z ) f )  e.  ( x ( Hom  `  T )
z ) )
91 fvres 5701 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  T ) z ) f )  e.  ( x ( Hom  `  T
) z )  -> 
( ( 1st  |`  (
x ( Hom  `  T
) z ) ) `
 ( g (
<. x ,  y >.
(comp `  T )
z ) f ) )  =  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9290, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
931, 4, 5, 26, 85, 86, 87, 88, 89, 27xpcco1st 14990 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st `  g ) ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
9492, 93eqtrd 2473 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st `  g ) ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
9563ad2ant1 1004 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  C  e.  Cat )
9673ad2ant1 1004 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  D  e.  Cat )
971, 4, 5, 95, 96, 8, 85, 871stf2 14999 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  P
) z )  =  ( 1st  |`  (
x ( Hom  `  T
) z ) ) )
9897fveq1d 5690 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st  |`  ( x
( Hom  `  T ) z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9985, 50syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x )  =  ( 1st `  x
) )
10086, 52syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  y )  =  ( 1st `  y
) )
10199, 100opeq12d 4064 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  <. ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >.  =  <. ( 1st `  x ) ,  ( 1st `  y
) >. )
102 fvres 5701 . . . . . . . 8  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 z )  =  ( 1st `  z
) )
10387, 102syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  z )  =  ( 1st `  z
) )
104101, 103oveq12d 6108 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( <. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) )  =  ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) )
1051, 4, 5, 95, 96, 8, 86, 871stf2 14999 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( y
( 2nd `  P
) z )  =  ( 1st  |`  (
y ( Hom  `  T
) z ) ) )
106105fveq1d 5690 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  P
) z ) `  g )  =  ( ( 1st  |`  (
y ( Hom  `  T
) z ) ) `
 g ) )
107 fvres 5701 . . . . . . . 8  |-  ( g  e.  ( y ( Hom  `  T )
z )  ->  (
( 1st  |`  ( y ( Hom  `  T
) z ) ) `
 g )  =  ( 1st `  g
) )
10889, 107syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( y ( Hom  `  T )
z ) ) `  g )  =  ( 1st `  g ) )
109106, 108eqtrd 2473 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  P
) z ) `  g )  =  ( 1st `  g ) )
1101, 4, 5, 95, 96, 8, 85, 861stf2 14999 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  P
) y )  =  ( 1st  |`  (
x ( Hom  `  T
) y ) ) )
111110fveq1d 5690 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) y ) `  f )  =  ( ( 1st  |`  (
x ( Hom  `  T
) y ) ) `
 f ) )
112 fvres 5701 . . . . . . . 8  |-  ( f  e.  ( x ( Hom  `  T )
y )  ->  (
( 1st  |`  ( x ( Hom  `  T
) y ) ) `
 f )  =  ( 1st `  f
) )
11388, 112syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
y ) ) `  f )  =  ( 1st `  f ) )
114111, 113eqtrd 2473 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) y ) `  f )  =  ( 1st `  f ) )
115104, 109, 114oveq123d 6111 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
( y ( 2nd `  P ) z ) `
 g ) (
<. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  P ) y ) `
 f ) )  =  ( ( 1st `  g ) ( <.
( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
11694, 98, 1153eqtr4d 2483 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( ( y ( 2nd `  P ) z ) `
 g ) (
<. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  P ) y ) `
 f ) ) )
1174, 2, 5, 23, 24, 25, 26, 27, 28, 6, 30, 37, 56, 83, 116isfuncd 14771 . . 3  |-  ( ph  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  C )
( 2nd `  P
) )
118 df-br 4290 . . 3  |-  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  C )
( 2nd `  P
)  <->  <. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  e.  ( T 
Func  C ) )
119117, 118sylib 196 . 2  |-  ( ph  -> 
<. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  e.  ( T 
Func  C ) )
12022, 119eqeltrd 2515 1  |-  ( ph  ->  P  e.  ( T 
Func  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970   <.cop 3880   class class class wbr 4289    X. cxp 4834    |` cres 4838   Fun wfun 5409    Fn wfn 5410   -->wf 5411   -onto->wfo 5413   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   1stc1st 6574   2ndc2nd 6575   Basecbs 14170   Hom chom 14245  compcco 14246   Catccat 14598   Idccid 14599    Func cfunc 14760    X.c cxpc 14974    1stF c1stf 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-hom 14258  df-cco 14259  df-cat 14602  df-cid 14603  df-func 14764  df-xpc 14978  df-1stf 14979
This theorem is referenced by:  prf1st  15010  1st2ndprf  15012  uncfcl  15041  uncf1  15042  uncf2  15043  diagcl  15047  diag11  15049  diag12  15050  diag2  15051  yonedalem1  15078  yonedalem21  15079  yonedalem22  15084
  Copyright terms: Public domain W3C validator