MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfcl Structured version   Unicode version

Theorem 1stfcl 15320
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t  |-  T  =  ( C  X.c  D )
1stfcl.c  |-  ( ph  ->  C  e.  Cat )
1stfcl.d  |-  ( ph  ->  D  e.  Cat )
1stfcl.p  |-  P  =  ( C  1stF  D )
Assertion
Ref Expression
1stfcl  |-  ( ph  ->  P  e.  ( T 
Func  C ) )

Proof of Theorem 1stfcl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4  |-  T  =  ( C  X.c  D )
2 eqid 2467 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2467 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
41, 2, 3xpcbas 15301 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
5 eqid 2467 . . . 4  |-  ( Hom  `  T )  =  ( Hom  `  T )
6 1stfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 1stfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 1stfcl.p . . . 4  |-  P  =  ( C  1stF  D )
91, 4, 5, 6, 7, 81stfval 15314 . . 3  |-  ( ph  ->  P  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
>. )
10 fo1st 6801 . . . . . . . 8  |-  1st : _V -onto-> _V
11 fofun 5794 . . . . . . . 8  |-  ( 1st
: _V -onto-> _V  ->  Fun 
1st )
1210, 11ax-mp 5 . . . . . . 7  |-  Fun  1st
13 fvex 5874 . . . . . . . 8  |-  ( Base `  C )  e.  _V
14 fvex 5874 . . . . . . . 8  |-  ( Base `  D )  e.  _V
1513, 14xpex 6711 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  e.  _V
16 resfunexg 6124 . . . . . . 7  |-  ( ( Fun  1st  /\  (
( Base `  C )  X.  ( Base `  D
) )  e.  _V )  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) )  e. 
_V )
1712, 15, 16mp2an 672 . . . . . 6  |-  ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) )  e.  _V
1815, 15mpt2ex 6857 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  e.  _V
1917, 18op2ndd 6792 . . . . 5  |-  ( P  =  <. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) ) >.  ->  ( 2nd `  P )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) ) )
209, 19syl 16 . . . 4  |-  ( ph  ->  ( 2nd `  P
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) ) )
2120opeq2d 4220 . . 3  |-  ( ph  -> 
<. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
>. )
229, 21eqtr4d 2511 . 2  |-  ( ph  ->  P  =  <. ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( 2nd `  P ) >. )
23 eqid 2467 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
24 eqid 2467 . . . 4  |-  ( Id
`  T )  =  ( Id `  T
)
25 eqid 2467 . . . 4  |-  ( Id
`  C )  =  ( Id `  C
)
26 eqid 2467 . . . 4  |-  (comp `  T )  =  (comp `  T )
27 eqid 2467 . . . 4  |-  (comp `  C )  =  (comp `  C )
281, 6, 7xpccat 15313 . . . 4  |-  ( ph  ->  T  e.  Cat )
29 f1stres 6803 . . . . 5  |-  ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  C
)
3029a1i 11 . . . 4  |-  ( ph  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  C )
)
31 eqid 2467 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) )
32 ovex 6307 . . . . . . 7  |-  ( x ( Hom  `  T
) y )  e. 
_V
33 resfunexg 6124 . . . . . . 7  |-  ( ( Fun  1st  /\  (
x ( Hom  `  T
) y )  e. 
_V )  ->  ( 1st  |`  ( x ( Hom  `  T )
y ) )  e. 
_V )
3412, 32, 33mp2an 672 . . . . . 6  |-  ( 1st  |`  ( x ( Hom  `  T ) y ) )  e.  _V
3531, 34fnmpt2i 6850 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )  Fn  ( ( (
Base `  C )  X.  ( Base `  D
) )  X.  (
( Base `  C )  X.  ( Base `  D
) ) )
3620fneq1d 5669 . . . . 5  |-  ( ph  ->  ( ( 2nd `  P
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 1st  |`  ( x ( Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) ) )
3735, 36mpbiri 233 . . . 4  |-  ( ph  ->  ( 2nd `  P
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
38 f1stres 6803 . . . . . 6  |-  ( 1st  |`  ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )
396adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  C  e.  Cat )
407adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  D  e.  Cat )
41 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
42 simprr 756 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
431, 4, 5, 39, 40, 8, 41, 421stf2 15316 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y )  =  ( 1st  |`  ( x
( Hom  `  T ) y ) ) )
44 eqid 2467 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
451, 4, 23, 44, 5, 41, 42xpchom 15303 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( Hom  `  T )
y )  =  ( ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) )
4645reseq2d 5271 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( 1st  |`  (
x ( Hom  `  T
) y ) )  =  ( 1st  |`  (
( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) )
4743, 46eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y )  =  ( 1st  |`  ( (
( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) )
4847feq1d 5715 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  P
) y ) : ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  <->  ( 1st  |`  ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) ) )
4938, 48mpbiri 233 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y ) : ( ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) )
50 fvres 5878 . . . . . . . 8  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
5150ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
52 fvres 5878 . . . . . . . 8  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 1st `  y
) )
5352ad2antll 728 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 1st `  y
) )
5451, 53oveq12d 6300 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ( Hom  `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  =  ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) )
5545, 54feq23d 5724 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  P
) y ) : ( x ( Hom  `  T ) y ) --> ( ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x ) ( Hom  `  C )
( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  <->  ( x
( 2nd `  P
) y ) : ( ( ( 1st `  x ) ( Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) ( Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 1st `  x
) ( Hom  `  C
) ( 1st `  y
) ) ) )
5649, 55mpbird 232 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  P ) y ) : ( x ( Hom  `  T
) y ) --> ( ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ( Hom  `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) ) )
5728adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  T  e.  Cat )
58 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
594, 5, 24, 57, 58catidcl 14933 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  e.  ( x ( Hom  `  T
) x ) )
60 fvres 5878 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  e.  ( x ( Hom  `  T ) x )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 1st `  (
( Id `  T
) `  x )
) )
6159, 60syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 1st `  (
( Id `  T
) `  x )
) )
62 1st2nd2 6818 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6362adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6463fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  ( ( Id `  T
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
656adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  C  e.  Cat )
667adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  D  e.  Cat )
67 eqid 2467 . . . . . . . . 9  |-  ( Id
`  D )  =  ( Id `  D
)
68 xp1st 6811 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
6968adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
70 xp2nd 6812 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
7170adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
721, 65, 66, 2, 3, 25, 67, 24, 69, 71xpcid 15312 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >. )
7364, 72eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `  ( 2nd `  x ) )
>. )
74 fvex 5874 . . . . . . . 8  |-  ( ( Id `  C ) `
 ( 1st `  x
) )  e.  _V
75 fvex 5874 . . . . . . . 8  |-  ( ( Id `  D ) `
 ( 2nd `  x
) )  e.  _V
7674, 75op1std 6791 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >.  ->  ( 1st `  ( ( Id
`  T ) `  x ) )  =  ( ( Id `  C ) `  ( 1st `  x ) ) )
7773, 76syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  (
( Id `  T
) `  x )
)  =  ( ( Id `  C ) `
 ( 1st `  x
) ) )
7861, 77eqtrd 2508 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( ( Id
`  C ) `  ( 1st `  x ) ) )
791, 4, 5, 65, 66, 8, 58, 581stf2 15316 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( x ( 2nd `  P ) x )  =  ( 1st  |`  ( x
( Hom  `  T ) x ) ) )
8079fveq1d 5866 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  P
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( 1st  |`  (
x ( Hom  `  T
) x ) ) `
 ( ( Id
`  T ) `  x ) ) )
8150adantl 466 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 1st `  x
) )
8281fveq2d 5868 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  C ) `  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) )  =  ( ( Id `  C ) `  ( 1st `  x ) ) )
8378, 80, 823eqtr4d 2518 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  P
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( Id `  C
) `  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x ) ) )
84283ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  T  e.  Cat )
85 simp21 1029 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
86 simp22 1030 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
87 simp23 1031 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
88 simp3l 1024 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  f  e.  ( x ( Hom  `  T ) y ) )
89 simp3r 1025 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  g  e.  ( y ( Hom  `  T ) z ) )
904, 5, 26, 84, 85, 86, 87, 88, 89catcocl 14936 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  T )
z ) f )  e.  ( x ( Hom  `  T )
z ) )
91 fvres 5878 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  T ) z ) f )  e.  ( x ( Hom  `  T
) z )  -> 
( ( 1st  |`  (
x ( Hom  `  T
) z ) ) `
 ( g (
<. x ,  y >.
(comp `  T )
z ) f ) )  =  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9290, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
931, 4, 5, 26, 85, 86, 87, 88, 89, 27xpcco1st 15307 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( 1st `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st `  g ) ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
9492, 93eqtrd 2508 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st `  g ) ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
9563ad2ant1 1017 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  C  e.  Cat )
9673ad2ant1 1017 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  D  e.  Cat )
971, 4, 5, 95, 96, 8, 85, 871stf2 15316 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  P
) z )  =  ( 1st  |`  (
x ( Hom  `  T
) z ) ) )
9897fveq1d 5866 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 1st  |`  ( x
( Hom  `  T ) z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9985, 50syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x )  =  ( 1st `  x
) )
10086, 52syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  y )  =  ( 1st `  y
) )
10199, 100opeq12d 4221 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  <. ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >.  =  <. ( 1st `  x ) ,  ( 1st `  y
) >. )
102 fvres 5878 . . . . . . . 8  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 1st  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 z )  =  ( 1st `  z
) )
10387, 102syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  z )  =  ( 1st `  z
) )
104101, 103oveq12d 6300 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( <. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) )  =  ( <. ( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) )
1051, 4, 5, 95, 96, 8, 86, 871stf2 15316 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( y
( 2nd `  P
) z )  =  ( 1st  |`  (
y ( Hom  `  T
) z ) ) )
106105fveq1d 5866 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  P
) z ) `  g )  =  ( ( 1st  |`  (
y ( Hom  `  T
) z ) ) `
 g ) )
107 fvres 5878 . . . . . . . 8  |-  ( g  e.  ( y ( Hom  `  T )
z )  ->  (
( 1st  |`  ( y ( Hom  `  T
) z ) ) `
 g )  =  ( 1st `  g
) )
10889, 107syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( y ( Hom  `  T )
z ) ) `  g )  =  ( 1st `  g ) )
109106, 108eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  P
) z ) `  g )  =  ( 1st `  g ) )
1101, 4, 5, 95, 96, 8, 85, 861stf2 15316 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  P
) y )  =  ( 1st  |`  (
x ( Hom  `  T
) y ) ) )
111110fveq1d 5866 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) y ) `  f )  =  ( ( 1st  |`  (
x ( Hom  `  T
) y ) ) `
 f ) )
112 fvres 5878 . . . . . . . 8  |-  ( f  e.  ( x ( Hom  `  T )
y )  ->  (
( 1st  |`  ( x ( Hom  `  T
) y ) ) `
 f )  =  ( 1st `  f
) )
11388, 112syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( ( 1st  |`  ( x ( Hom  `  T )
y ) ) `  f )  =  ( 1st `  f ) )
114111, 113eqtrd 2508 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) y ) `  f )  =  ( 1st `  f ) )
115104, 109, 114oveq123d 6303 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
( y ( 2nd `  P ) z ) `
 g ) (
<. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  P ) y ) `
 f ) )  =  ( ( 1st `  g ) ( <.
( 1st `  x
) ,  ( 1st `  y ) >. (comp `  C ) ( 1st `  z ) ) ( 1st `  f ) ) )
11694, 98, 1153eqtr4d 2518 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x ( Hom  `  T ) y )  /\  g  e.  ( y ( Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  P
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( ( y ( 2nd `  P ) z ) `
 g ) (
<. ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  C ) ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  P ) y ) `
 f ) ) )
1174, 2, 5, 23, 24, 25, 26, 27, 28, 6, 30, 37, 56, 83, 116isfuncd 15088 . . 3  |-  ( ph  ->  ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  C )
( 2nd `  P
) )
118 df-br 4448 . . 3  |-  ( ( 1st  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  C )
( 2nd `  P
)  <->  <. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  e.  ( T 
Func  C ) )
119117, 118sylib 196 . 2  |-  ( ph  -> 
<. ( 1st  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  P
) >.  e.  ( T 
Func  C ) )
12022, 119eqeltrd 2555 1  |-  ( ph  ->  P  e.  ( T 
Func  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3113   <.cop 4033   class class class wbr 4447    X. cxp 4997    |` cres 5001   Fun wfun 5580    Fn wfn 5581   -->wf 5582   -onto->wfo 5584   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780   Basecbs 14486   Hom chom 14562  compcco 14563   Catccat 14915   Idccid 14916    Func cfunc 15077    X.c cxpc 15291    1stF c1stf 15292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-fz 11669  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-hom 14575  df-cco 14576  df-cat 14919  df-cid 14920  df-func 15081  df-xpc 15295  df-1stf 15296
This theorem is referenced by:  prf1st  15327  1st2ndprf  15329  uncfcl  15358  uncf1  15359  uncf2  15360  diagcl  15364  diag11  15366  diag12  15367  diag2  15368  yonedalem1  15395  yonedalem21  15396  yonedalem22  15401
  Copyright terms: Public domain W3C validator