MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgenlem Structured version   Visualization version   Unicode version

Theorem 1stckgenlem 20580
Description: The one-point compactification of  NN is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
1stckgen.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
1stckgen.2  |-  ( ph  ->  F : NN --> X )
1stckgen.3  |-  ( ph  ->  F ( ~~> t `  J ) A )
Assertion
Ref Expression
1stckgenlem  |-  ( ph  ->  ( Jt  ( ran  F  u.  { A } ) )  e.  Comp )

Proof of Theorem 1stckgenlem
Dummy variables  j 
k  n  s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 767 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  ( ran  F  u.  { A } )  C_  U. u
)
2 ssun2 3600 . . . . . . . . 9  |-  { A }  C_  ( ran  F  u.  { A } )
3 1stckgen.1 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 1stckgen.3 . . . . . . . . . . 11  |-  ( ph  ->  F ( ~~> t `  J ) A )
5 lmcl 20325 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) A )  ->  A  e.  X )
63, 4, 5syl2anc 667 . . . . . . . . . 10  |-  ( ph  ->  A  e.  X )
7 snssg 4108 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( A  e.  ( ran  F  u.  { A }
)  <->  { A }  C_  ( ran  F  u.  { A } ) ) )
86, 7syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  ( ran  F  u.  { A } )  <->  { A }  C_  ( ran  F  u.  { A } ) ) )
92, 8mpbiri 237 . . . . . . . 8  |-  ( ph  ->  A  e.  ( ran 
F  u.  { A } ) )
109adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  A  e.  ( ran  F  u.  { A } ) )
111, 10sseldd 3435 . . . . . 6  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  A  e.  U. u )
12 eluni2 4205 . . . . . 6  |-  ( A  e.  U. u  <->  E. w  e.  u  A  e.  w )
1311, 12sylib 200 . . . . 5  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  E. w  e.  u  A  e.  w )
14 nnuz 11201 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
15 simprr 767 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  A  e.  w )
16 1zzd 10975 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  1  e.  ZZ )
174ad2antrr 733 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  F
( ~~> t `  J
) A )
18 simplrl 771 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  u  e.  ~P J )
1918elpwid 3963 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  u  C_  J )
20 simprl 765 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  w  e.  u )
2119, 20sseldd 3435 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  w  e.  J )
2214, 15, 16, 17, 21lmcvg 20290 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  w )
23 imassrn 5182 . . . . . . . . . . . . 13  |-  ( F
" ( 1 ... j ) )  C_  ran  F
24 ssun1 3599 . . . . . . . . . . . . 13  |-  ran  F  C_  ( ran  F  u.  { A } )
2523, 24sstri 3443 . . . . . . . . . . . 12  |-  ( F
" ( 1 ... j ) )  C_  ( ran  F  u.  { A } )
26 id 22 . . . . . . . . . . . 12  |-  ( ( ran  F  u.  { A } )  C_  U. u  ->  ( ran  F  u.  { A } )  C_  U. u )
2725, 26syl5ss 3445 . . . . . . . . . . 11  |-  ( ( ran  F  u.  { A } )  C_  U. u  ->  ( F " (
1 ... j ) ) 
C_  U. u )
28 1stckgen.2 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F : NN --> X )
29 frn 5740 . . . . . . . . . . . . . . . . . . 19  |-  ( F : NN --> X  ->  ran  F  C_  X )
3028, 29syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ran  F  C_  X
)
3123, 30syl5ss 3445 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F " (
1 ... j ) ) 
C_  X )
32 resttopon 20189 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  ( F " ( 1 ... j ) )  C_  X )  ->  ( Jt  ( F " ( 1 ... j ) ) )  e.  (TopOn `  ( F " ( 1 ... j ) ) ) )
333, 31, 32syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Jt  ( F "
( 1 ... j
) ) )  e.  (TopOn `  ( F " ( 1 ... j
) ) ) )
34 topontop 19953 . . . . . . . . . . . . . . . 16  |-  ( ( Jt  ( F " (
1 ... j ) ) )  e.  (TopOn `  ( F " ( 1 ... j ) ) )  ->  ( Jt  ( F " ( 1 ... j ) ) )  e.  Top )
3533, 34syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Jt  ( F "
( 1 ... j
) ) )  e. 
Top )
36 fzfid 12193 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1 ... j
)  e.  Fin )
37 ffun 5736 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : NN --> X  ->  Fun  F )
3828, 37syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Fun  F )
39 elfznn 11835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
4039ssriv 3438 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... j )  C_  NN
41 fdm 5738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : NN --> X  ->  dom  F  =  NN )
4228, 41syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  dom  F  =  NN )
4340, 42syl5sseqr 3483 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1 ... j
)  C_  dom  F )
44 fores 5807 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Fun  F  /\  (
1 ... j )  C_  dom  F )  ->  ( F  |`  ( 1 ... j ) ) : ( 1 ... j
) -onto-> ( F "
( 1 ... j
) ) )
4538, 43, 44syl2anc 667 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F  |`  (
1 ... j ) ) : ( 1 ... j ) -onto-> ( F
" ( 1 ... j ) ) )
46 fofi 7865 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... j
)  e.  Fin  /\  ( F  |`  ( 1 ... j ) ) : ( 1 ... j ) -onto-> ( F
" ( 1 ... j ) ) )  ->  ( F "
( 1 ... j
) )  e.  Fin )
4736, 45, 46syl2anc 667 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F " (
1 ... j ) )  e.  Fin )
48 pwfi 7874 . . . . . . . . . . . . . . . . 17  |-  ( ( F " ( 1 ... j ) )  e.  Fin  <->  ~P ( F " ( 1 ... j ) )  e. 
Fin )
4947, 48sylib 200 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ~P ( F "
( 1 ... j
) )  e.  Fin )
50 restsspw 15342 . . . . . . . . . . . . . . . 16  |-  ( Jt  ( F " ( 1 ... j ) ) )  C_  ~P ( F " ( 1 ... j ) )
51 ssfi 7797 . . . . . . . . . . . . . . . 16  |-  ( ( ~P ( F "
( 1 ... j
) )  e.  Fin  /\  ( Jt  ( F "
( 1 ... j
) ) )  C_  ~P ( F " (
1 ... j ) ) )  ->  ( Jt  ( F " ( 1 ... j ) ) )  e.  Fin )
5249, 50, 51sylancl 669 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Jt  ( F "
( 1 ... j
) ) )  e. 
Fin )
5335, 52elind 3620 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Jt  ( F "
( 1 ... j
) ) )  e.  ( Top  i^i  Fin ) )
54 fincmp 20420 . . . . . . . . . . . . . 14  |-  ( ( Jt  ( F " (
1 ... j ) ) )  e.  ( Top 
i^i  Fin )  ->  ( Jt  ( F " ( 1 ... j ) ) )  e.  Comp )
5553, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Jt  ( F "
( 1 ... j
) ) )  e. 
Comp )
56 topontop 19953 . . . . . . . . . . . . . . 15  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
573, 56syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  Top )
58 toponuni 19954 . . . . . . . . . . . . . . . 16  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
593, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =  U. J
)
6031, 59sseqtrd 3470 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F " (
1 ... j ) ) 
C_  U. J )
61 eqid 2453 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
6261cmpsub 20427 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( F " ( 1 ... j ) ) 
C_  U. J )  -> 
( ( Jt  ( F
" ( 1 ... j ) ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( F
" ( 1 ... j ) )  C_  U. u  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s ) ) )
6357, 60, 62syl2anc 667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Jt  ( F
" ( 1 ... j ) ) )  e.  Comp  <->  A. u  e.  ~P  J ( ( F
" ( 1 ... j ) )  C_  U. u  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s ) ) )
6455, 63mpbid 214 . . . . . . . . . . . 12  |-  ( ph  ->  A. u  e.  ~P  J ( ( F
" ( 1 ... j ) )  C_  U. u  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s ) )
6564r19.21bi 2759 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ~P J )  ->  (
( F " (
1 ... j ) ) 
C_  U. u  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s ) )
6627, 65syl5 33 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ~P J )  ->  (
( ran  F  u.  { A } )  C_  U. u  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s ) )
6766impr 625 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  E. s  e.  ( ~P u  i^i 
Fin ) ( F
" ( 1 ... j ) )  C_  U. s )
6867adantr 467 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  ->  E. s  e.  ( ~P u  i^i  Fin ) ( F "
( 1 ... j
) )  C_  U. s
)
69 inss1 3654 . . . . . . . . . . . . . 14  |-  ( ~P u  i^i  Fin )  C_ 
~P u
70 simprl 765 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
s  e.  ( ~P u  i^i  Fin )
)
7169, 70sseldi 3432 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
s  e.  ~P u
)
7271elpwid 3963 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
s  C_  u )
73 simprll 773 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  ->  w  e.  u
)
7473adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  w  e.  u )
7574snssd 4120 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  { w }  C_  u )
7672, 75unssd 3612 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( s  u.  {
w } )  C_  u )
77 vex 3050 . . . . . . . . . . . 12  |-  u  e. 
_V
7877elpw2 4570 . . . . . . . . . . 11  |-  ( ( s  u.  { w } )  e.  ~P u 
<->  ( s  u.  {
w } )  C_  u )
7976, 78sylibr 216 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( s  u.  {
w } )  e. 
~P u )
80 inss2 3655 . . . . . . . . . . . 12  |-  ( ~P u  i^i  Fin )  C_ 
Fin
8180, 70sseldi 3432 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
s  e.  Fin )
82 snfi 7655 . . . . . . . . . . 11  |-  { w }  e.  Fin
83 unfi 7843 . . . . . . . . . . 11  |-  ( ( s  e.  Fin  /\  { w }  e.  Fin )  ->  ( s  u. 
{ w } )  e.  Fin )
8481, 82, 83sylancl 669 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( s  u.  {
w } )  e. 
Fin )
8579, 84elind 3620 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( s  u.  {
w } )  e.  ( ~P u  i^i 
Fin ) )
86 ffn 5733 . . . . . . . . . . . . . 14  |-  ( F : NN --> X  ->  F  Fn  NN )
8728, 86syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  NN )
8887ad3antrrr 737 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  F  Fn  NN )
89 simprrr 776 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  ->  A. k  e.  (
ZZ>= `  j ) ( F `  k )  e.  w )
9089adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  w )
91 fveq2 5870 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
9291eleq1d 2515 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( F `  k
)  e.  w  <->  ( F `  n )  e.  w
) )
9392rspccva 3151 . . . . . . . . . . . . . . . . 17  |-  ( ( A. k  e.  (
ZZ>= `  j ) ( F `  k )  e.  w  /\  n  e.  ( ZZ>= `  j )
)  ->  ( F `  n )  e.  w
)
9490, 93sylan 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  ( ZZ>= `  j ) )  -> 
( F `  n
)  e.  w )
95 elun2 3604 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  w  ->  ( F `  n )  e.  ( U. s  u.  w ) )
9694, 95syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  ( ZZ>= `  j ) )  -> 
( F `  n
)  e.  ( U. s  u.  w )
)
9796adantlr 722 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  /\  (
( w  e.  u  /\  A  e.  w
)  /\  ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  w ) ) )  /\  (
s  e.  ( ~P u  i^i  Fin )  /\  ( F " (
1 ... j ) ) 
C_  U. s ) )  /\  n  e.  NN )  /\  n  e.  (
ZZ>= `  j ) )  ->  ( F `  n )  e.  ( U. s  u.  w
) )
98 elnnuz 11202 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
9998anbi1i 702 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  j  e.  ( ZZ>= `  n ) )  <->  ( n  e.  ( ZZ>= `  1 )  /\  j  e.  ( ZZ>=
`  n ) ) )
100 elfzuzb 11801 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... j )  <->  ( n  e.  ( ZZ>= `  1 )  /\  j  e.  ( ZZ>=
`  n ) ) )
10199, 100bitr4i 256 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  j  e.  ( ZZ>= `  n ) )  <->  n  e.  ( 1 ... j
) )
102 simprr 767 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( F " (
1 ... j ) ) 
C_  U. s )
103 funimass4 5921 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Fun  F  /\  (
1 ... j )  C_  dom  F )  ->  (
( F " (
1 ... j ) ) 
C_  U. s  <->  A. n  e.  ( 1 ... j
) ( F `  n )  e.  U. s ) )
10438, 43, 103syl2anc 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( F "
( 1 ... j
) )  C_  U. s  <->  A. n  e.  ( 1 ... j ) ( F `  n )  e.  U. s ) )
105104ad3antrrr 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( ( F "
( 1 ... j
) )  C_  U. s  <->  A. n  e.  ( 1 ... j ) ( F `  n )  e.  U. s ) )
106102, 105mpbid 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  A. n  e.  (
1 ... j ) ( F `  n )  e.  U. s )
107106r19.21bi 2759 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  ( 1 ... j ) )  ->  ( F `  n )  e.  U. s )
108 elun1 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  n )  e.  U. s  -> 
( F `  n
)  e.  ( U. s  u.  w )
)
109107, 108syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  ( 1 ... j ) )  ->  ( F `  n )  e.  ( U. s  u.  w
) )
110101, 109sylan2b 478 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  ( n  e.  NN  /\  j  e.  ( ZZ>= `  n ) ) )  ->  ( F `  n )  e.  ( U. s  u.  w
) )
111110anassrs 654 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  /\  (
( w  e.  u  /\  A  e.  w
)  /\  ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  w ) ) )  /\  (
s  e.  ( ~P u  i^i  Fin )  /\  ( F " (
1 ... j ) ) 
C_  U. s ) )  /\  n  e.  NN )  /\  j  e.  (
ZZ>= `  n ) )  ->  ( F `  n )  e.  ( U. s  u.  w
) )
112 simprl 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  u  /\  A  e.  w
)  /\  ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  w ) )  ->  j  e.  NN )
113112ad2antlr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
j  e.  NN )
114 nnz 10966 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  ->  j  e.  ZZ )
115 nnz 10966 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  n  e.  ZZ )
116 uztric 11187 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  n  e.  ZZ )  ->  ( n  e.  (
ZZ>= `  j )  \/  j  e.  ( ZZ>= `  n ) ) )
117114, 115, 116syl2an 480 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  NN  /\  n  e.  NN )  ->  ( n  e.  (
ZZ>= `  j )  \/  j  e.  ( ZZ>= `  n ) ) )
118113, 117sylan 474 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  NN )  ->  ( n  e.  (
ZZ>= `  j )  \/  j  e.  ( ZZ>= `  n ) ) )
11997, 111, 118mpjaodan 796 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  /\  n  e.  NN )  ->  ( F `  n
)  e.  ( U. s  u.  w )
)
120119ralrimiva 2804 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  A. n  e.  NN  ( F `  n )  e.  ( U. s  u.  w ) )
121 fnfvrnss 6056 . . . . . . . . . . . 12  |-  ( ( F  Fn  NN  /\  A. n  e.  NN  ( F `  n )  e.  ( U. s  u.  w ) )  ->  ran  F  C_  ( U. s  u.  w )
)
12288, 120, 121syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  ran  F  C_  ( U. s  u.  w )
)
123 elun2 3604 . . . . . . . . . . . . . 14  |-  ( A  e.  w  ->  A  e.  ( U. s  u.  w ) )
124123ad2antlr 734 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  u  /\  A  e.  w
)  /\  ( j  e.  NN  /\  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  w ) )  ->  A  e.  ( U. s  u.  w
) )
125124ad2antlr 734 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  A  e.  ( U. s  u.  w )
)
126125snssd 4120 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  { A }  C_  ( U. s  u.  w
) )
127122, 126unssd 3612 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( ran  F  u.  { A } )  C_  ( U. s  u.  w
) )
128 uniun 4220 . . . . . . . . . . 11  |-  U. (
s  u.  { w } )  =  ( U. s  u.  U. { w } )
129 vex 3050 . . . . . . . . . . . . 13  |-  w  e. 
_V
130129unisn 4216 . . . . . . . . . . . 12  |-  U. {
w }  =  w
131130uneq2i 3587 . . . . . . . . . . 11  |-  ( U. s  u.  U. { w } )  =  ( U. s  u.  w
)
132128, 131eqtri 2475 . . . . . . . . . 10  |-  U. (
s  u.  { w } )  =  ( U. s  u.  w
)
133127, 132syl6sseqr 3481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  -> 
( ran  F  u.  { A } )  C_  U. ( s  u.  {
w } ) )
134 unieq 4209 . . . . . . . . . . 11  |-  ( v  =  ( s  u. 
{ w } )  ->  U. v  =  U. ( s  u.  {
w } ) )
135134sseq2d 3462 . . . . . . . . . 10  |-  ( v  =  ( s  u. 
{ w } )  ->  ( ( ran 
F  u.  { A } )  C_  U. v  <->  ( ran  F  u.  { A } )  C_  U. (
s  u.  { w } ) ) )
136135rspcev 3152 . . . . . . . . 9  |-  ( ( ( s  u.  {
w } )  e.  ( ~P u  i^i 
Fin )  /\  ( ran  F  u.  { A } )  C_  U. (
s  u.  { w } ) )  ->  E. v  e.  ( ~P u  i^i  Fin )
( ran  F  u.  { A } )  C_  U. v )
13785, 133, 136syl2anc 667 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  /\  ( s  e.  ( ~P u  i^i 
Fin )  /\  ( F " ( 1 ... j ) )  C_  U. s ) )  ->  E. v  e.  ( ~P u  i^i  Fin )
( ran  F  u.  { A } )  C_  U. v )
13868, 137rexlimddv 2885 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( ( w  e.  u  /\  A  e.  w )  /\  (
j  e.  NN  /\  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  w ) ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) ( ran  F  u.  { A } ) 
C_  U. v )
139138anassrs 654 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } ) 
C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w ) )  /\  ( j  e.  NN  /\ 
A. k  e.  (
ZZ>= `  j ) ( F `  k )  e.  w ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) ( ran  F  u.  { A } ) 
C_  U. v )
14022, 139rexlimddv 2885 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u ) )  /\  ( w  e.  u  /\  A  e.  w
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( ran 
F  u.  { A } )  C_  U. v
)
14113, 140rexlimddv 2885 . . . 4  |-  ( (
ph  /\  ( u  e.  ~P J  /\  ( ran  F  u.  { A } )  C_  U. u
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( ran 
F  u.  { A } )  C_  U. v
)
142141expr 620 . . 3  |-  ( (
ph  /\  u  e.  ~P J )  ->  (
( ran  F  u.  { A } )  C_  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) ( ran 
F  u.  { A } )  C_  U. v
) )
143142ralrimiva 2804 . 2  |-  ( ph  ->  A. u  e.  ~P  J ( ( ran 
F  u.  { A } )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( ran  F  u.  { A } ) 
C_  U. v ) )
1446snssd 4120 . . . . 5  |-  ( ph  ->  { A }  C_  X )
14530, 144unssd 3612 . . . 4  |-  ( ph  ->  ( ran  F  u.  { A } )  C_  X )
146145, 59sseqtrd 3470 . . 3  |-  ( ph  ->  ( ran  F  u.  { A } )  C_  U. J )
14761cmpsub 20427 . . 3  |-  ( ( J  e.  Top  /\  ( ran  F  u.  { A } )  C_  U. J
)  ->  ( ( Jt  ( ran  F  u.  { A } ) )  e. 
Comp 
<-> 
A. u  e.  ~P  J ( ( ran 
F  u.  { A } )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( ran  F  u.  { A } ) 
C_  U. v ) ) )
14857, 146, 147syl2anc 667 . 2  |-  ( ph  ->  ( ( Jt  ( ran 
F  u.  { A } ) )  e. 
Comp 
<-> 
A. u  e.  ~P  J ( ( ran 
F  u.  { A } )  C_  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) ( ran  F  u.  { A } ) 
C_  U. v ) ) )
149143, 148mpbird 236 1  |-  ( ph  ->  ( Jt  ( ran  F  u.  { A } ) )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739   E.wrex 2740    u. cun 3404    i^i cin 3405    C_ wss 3406   ~Pcpw 3953   {csn 3970   U.cuni 4201   class class class wbr 4405   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5579    Fn wfn 5580   -->wf 5581   -onto->wfo 5583   ` cfv 5585  (class class class)co 6295   Fincfn 7574   1c1 9545   NNcn 10616   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791   ↾t crest 15331   Topctop 19929  TopOnctopon 19930   ~~> tclm 20254   Compccmp 20413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fi 7930  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-rest 15333  df-topgen 15354  df-top 19933  df-bases 19934  df-topon 19935  df-lm 20257  df-cmp 20414
This theorem is referenced by:  1stckgen  20581
  Copyright terms: Public domain W3C validator