MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Unicode version

Theorem 1stccnp 19829
Description: A mapping is continuous at  P in a first-countable space  X iff it is sequentially continuous at  P, meaning that the image under  F of every sequence converging at  P converges to  F ( P ). This proof uses ax-cc 8827, but only via 1stcelcls 19828, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1  |-  ( ph  ->  J  e.  1stc )
1stccnp.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
1stccnp.3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
1stccnp.4  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
1stccnp  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Distinct variable groups:    f, F    f, J    ph, f    f, K   
f, X    f, Y    P, f

Proof of Theorem 1stccnp
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 1stccnp.3 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
31, 2jca 532 . . . 4  |-  ( ph  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
) )
4 cnpf2 19617 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
543expa 1196 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
63, 5sylan 471 . . 3  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
7 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
8 simplr 754 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
97, 8lmcnp 19671 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )
109ex 434 . . . 4  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( (
f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )
1110alrimiv 1695 . . 3  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. f
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) ) )
126, 11jca 532 . 2  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )
13 simprl 755 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  F : X --> Y )
14 fal 1386 . . . . . . . . 9  |-  -. F.
15 19.29 1660 . . . . . . . . . . . . . 14  |-  ( ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  E. f ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  ->  E. f
( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) ) )
16 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f : NN --> ( X 
\  ( `' F " u ) ) )
17 difss 3636 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X 
\  ( `' F " u ) )  C_  X
18 fss 5745 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f : NN --> ( X 
\  ( `' F " u ) )  /\  ( X  \  ( `' F " u ) )  C_  X )  ->  f : NN --> X )
1916, 17, 18sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f : NN --> X )
20 simprr 756 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f ( ~~> t `  J ) P )
2119, 20jca 532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( f : NN --> X  /\  f ( ~~> t `  J ) P ) )
22 nnuz 11129 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
23 simplrr 760 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( F `  P )  e.  u
)
24 1zzd 10907 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  1  e.  ZZ )
25 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )
26 simplrl 759 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  u  e.  K )
2722, 23, 24, 25, 26lmcvg 19629 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F  o.  f ) `  k
)  e.  u )
2822r19.2uz 13163 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F  o.  f ) `
 k )  e.  u  ->  E. k  e.  NN  ( ( F  o.  f ) `  k )  e.  u
)
29 simprll 761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  f : NN
--> ( X  \  ( `' F " u ) ) )
30 ffn 5737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : NN --> ( X 
\  ( `' F " u ) )  -> 
f  Fn  NN )
3129, 30syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  f  Fn  NN )
32 fvco2 5949 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  Fn  NN  /\  k  e.  NN )  ->  ( ( F  o.  f ) `  k
)  =  ( F `
 ( f `  k ) ) )
3331, 32sylan 471 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( F  o.  f
) `  k )  =  ( F `  ( f `  k
) ) )
3433eleq1d 2536 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( F  o.  f ) `  k
)  e.  u  <->  ( F `  ( f `  k
) )  e.  u
) )
3529ffvelrnda 6032 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  ( X  \  ( `' F " u ) ) )
3635eldifad 3493 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  X )
37 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  F : X
--> Y )
3837ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  F : X --> Y )
39 ffn 5737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F : X --> Y  ->  F  Fn  X )
40 elpreima 6008 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F  Fn  X  ->  (
( f `  k
)  e.  ( `' F " u )  <-> 
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u ) ) )
4138, 39, 403syl 20 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( f `  k
)  e.  ( `' F " u )  <-> 
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u ) ) )
4235eldifbd 3494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  -.  ( f `  k
)  e.  ( `' F " u ) )
4342pm2.21d 106 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( f `  k
)  e.  ( `' F " u )  -> F.  ) )
4441, 43sylbird 235 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u )  -> F.  ) )
4536, 44mpand 675 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( F `  (
f `  k )
)  e.  u  -> F.  ) )
4634, 45sylbid 215 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( F  o.  f ) `  k
)  e.  u  -> F.  ) )
4746rexlimdva 2959 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( E. k  e.  NN  (
( F  o.  f
) `  k )  e.  u  -> F.  )
)
4828, 47syl5 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F  o.  f ) `  k
)  e.  u  -> F.  ) )
4927, 48mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  -> F.  )
5049expr 615 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( ( F  o.  f ) ( ~~> t `  K ) ( F `
 P )  -> F.  ) )
5121, 50embantd 54 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  -> F.  ) )
5251ex 434 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  ( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  -> F.  ) ) )
5352com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  ( ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  -> F.  ) ) )
5453impd 431 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) )  -> F.  )
)
5554exlimdv 1700 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( E. f ( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) )  -> F.  )
)
5615, 55syl5 32 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  E. f ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> F.  )
)
5756exp4b 607 . . . . . . . . . . . 12  |-  ( (
ph  /\  F : X
--> Y )  ->  (
( u  e.  K  /\  ( F `  P
)  e.  u )  ->  ( A. f
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  -> F.  ) ) ) )
5857com23 78 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  ( ( u  e.  K  /\  ( F `  P )  e.  u )  ->  ( E. f ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  -> F.  ) ) ) )
5958impr 619 . . . . . . . . . 10  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  (
( u  e.  K  /\  ( F `  P
)  e.  u )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  -> F.  ) ) )
6059imp 429 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  -> F.  ) )
6114, 60mtoi 178 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )
62 1stccnp.1 . . . . . . . . . 10  |-  ( ph  ->  J  e.  1stc )
6362ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  1stc )
641ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  (TopOn `  X ) )
65 toponuni 19295 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
6664, 65syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  X  =  U. J )
6717, 66syl5sseq 3557 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( X  \ 
( `' F "
u ) )  C_  U. J )
68 eqid 2467 . . . . . . . . . 10  |-  U. J  =  U. J
69681stcelcls 19828 . . . . . . . . 9  |-  ( ( J  e.  1stc  /\  ( X  \  ( `' F " u ) )  C_  U. J )  ->  ( P  e.  ( ( cls `  J ) `  ( X  \  ( `' F " u ) ) )  <->  E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) ) )
7063, 67, 69syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  E. f ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) ) )
7161, 70mtbird 301 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) ) )
72 topontop 19294 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
7364, 72syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  Top )
74 1stccnp.4 . . . . . . . . . 10  |-  ( ph  ->  P  e.  X )
7574ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  P  e.  X
)
7675, 66eleqtrd 2557 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  P  e.  U. J )
7768elcls 19440 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( X  \  ( `' F " u ) )  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) ) )
7873, 67, 76, 77syl3anc 1228 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) ) )
7971, 78mtbid 300 . . . . . 6  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) )
8013ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  F : X
--> Y )
81 ffun 5739 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  Fun  F )
8280, 81syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  Fun  F )
83 toponss 19297 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  v  e.  J )  ->  v  C_  X )
8464, 83sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  v  C_  X )
85 fdm 5741 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  dom  F  =  X )
8680, 85syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  dom  F  =  X )
8784, 86sseqtr4d 3546 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  v  C_  dom  F )
88 funimass3 6004 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  v  C_ 
dom  F )  -> 
( ( F "
v )  C_  u  <->  v 
C_  ( `' F " u ) ) )
8982, 87, 88syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  v  C_  ( `' F " u ) ) )
90 df-ss 3495 . . . . . . . . . . . . 13  |-  ( v 
C_  X  <->  ( v  i^i  X )  =  v )
9184, 90sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( v  i^i  X )  =  v )
9291sseq1d 3536 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( (
v  i^i  X )  C_  ( `' F "
u )  <->  v  C_  ( `' F " u ) ) )
9389, 92bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  ( v  i^i  X
)  C_  ( `' F " u ) ) )
94 nne 2668 . . . . . . . . . . 11  |-  ( -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/)  <->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =  (/) )
95 inssdif0 3900 . . . . . . . . . . 11  |-  ( ( v  i^i  X ) 
C_  ( `' F " u )  <->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =  (/) )
9694, 95bitr4i 252 . . . . . . . . . 10  |-  ( -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/)  <->  ( v  i^i 
X )  C_  ( `' F " u ) )
9793, 96syl6bbr 263 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) )
9897anbi2d 703 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  u )  <->  ( P  e.  v  /\  -.  (
v  i^i  ( X  \  ( `' F "
u ) ) )  =/=  (/) ) ) )
9998rexbidva 2975 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  -.  (
v  i^i  ( X  \  ( `' F "
u ) ) )  =/=  (/) ) ) )
100 rexanali 2920 . . . . . . 7  |-  ( E. v  e.  J  ( P  e.  v  /\  -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) )  <->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) )
10199, 100syl6bb 261 . . . . . 6  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u )  <->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) ) )
10279, 101mpbird 232 . . . . 5  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
103102expr 615 . . . 4  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  u  e.  K )  ->  (
( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
104103ralrimiva 2881 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  A. u  e.  K  ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
105 iscnp 19604 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
1061, 2, 74, 105syl3anc 1228 . . . 4  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. u  e.  K  ( ( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
107106adantr 465 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  K  (
( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
10813, 104, 107mpbir2and 920 . 2  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
10912, 108impbida 830 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379   F. wfal 1384   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    \ cdif 3478    i^i cin 3480    C_ wss 3481   (/)c0 3790   U.cuni 4251   class class class wbr 4453   `'ccnv 5004   dom cdm 5005   "cima 5008    o. ccom 5009   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   1c1 9505   NNcn 10548   ZZ>=cuz 11094   Topctop 19261  TopOnctopon 19262   clsccl 19385    CnP ccnp 19592   ~~> tclm 19593   1stcc1stc 19804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cc 8827  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-top 19266  df-topon 19269  df-cld 19386  df-ntr 19387  df-cls 19388  df-cnp 19595  df-lm 19596  df-1stc 19806
This theorem is referenced by:  1stccn  19830  metcnp4  21614
  Copyright terms: Public domain W3C validator