MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Structured version   Unicode version

Theorem 1st2val 6811
Description: Value of an alternate definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Distinct variable group:    x, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem 1st2val
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5058 . . 3  |-  ( A  e.  ( _V  X.  _V )  <->  E. w E. v  A  =  <. w ,  v >. )
2 fveq2 5866 . . . . . 6  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. ) )
3 df-ov 6288 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )
4 vex 3116 . . . . . . . 8  |-  w  e. 
_V
5 vex 3116 . . . . . . . 8  |-  v  e. 
_V
6 simpl 457 . . . . . . . . 9  |-  ( ( x  =  w  /\  y  =  v )  ->  x  =  w )
7 mpt2v 6377 . . . . . . . . . 10  |-  ( x  e.  _V ,  y  e.  _V  |->  x )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  x }
87eqcomi 2480 . . . . . . . . 9  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( x  e.  _V ,  y  e.  _V  |->  x )
96, 8, 4ovmpt2a 6418 . . . . . . . 8  |-  ( ( w  e.  _V  /\  v  e.  _V )  ->  ( w { <. <.
x ,  y >. ,  z >.  |  z  =  x } v )  =  w )
104, 5, 9mp2an 672 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  w
113, 10eqtr3i 2498 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )  =  w
122, 11syl6eq 2524 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  w )
134, 5op1std 6795 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( 1st `  A
)  =  w )
1412, 13eqtr4d 2511 . . . 4  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
1514exlimivv 1699 . . 3  |-  ( E. w E. v  A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
161, 15sylbi 195 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
17 vex 3116 . . . . . . . . . 10  |-  x  e. 
_V
18 vex 3116 . . . . . . . . . 10  |-  y  e. 
_V
1917, 18pm3.2i 455 . . . . . . . . 9  |-  ( x  e.  _V  /\  y  e.  _V )
20 ax6ev 1721 . . . . . . . . 9  |-  E. z 
z  =  x
2119, 202th 239 . . . . . . . 8  |-  ( ( x  e.  _V  /\  y  e.  _V )  <->  E. z  z  =  x )
2221opabbii 4511 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  =  { <. x ,  y >.  |  E. z  z  =  x }
23 df-xp 5005 . . . . . . 7  |-  ( _V 
X.  _V )  =  { <. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  _V ) }
24 dmoprab 6368 . . . . . . 7  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  { <. x ,  y
>.  |  E. z 
z  =  x }
2522, 23, 243eqtr4ri 2507 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  ( _V  X.  _V )
2625eleq2i 2545 . . . . 5  |-  ( A  e.  dom  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  <->  A  e.  ( _V  X.  _V )
)
27 ndmfv 5890 . . . . 5  |-  ( -.  A  e.  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  ->  ( { <. <. x ,  y >. ,  z
>.  |  z  =  x } `  A )  =  (/) )
2826, 27sylnbir 307 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  (/) )
29 dmsnn0 5473 . . . . . . . 8  |-  ( A  e.  ( _V  X.  _V )  <->  dom  { A }  =/=  (/) )
3029biimpri 206 . . . . . . 7  |-  ( dom 
{ A }  =/=  (/) 
->  A  e.  ( _V  X.  _V ) )
3130necon1bi 2700 . . . . . 6  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  dom  { A }  =  (/) )
3231unieqd 4255 . . . . 5  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  U. (/) )
33 uni0 4272 . . . . 5  |-  U. (/)  =  (/)
3432, 33syl6eq 2524 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  (/) )
3528, 34eqtr4d 2511 . . 3  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  U. dom  { A } )
36 1stval 6787 . . 3  |-  ( 1st `  A )  =  U. dom  { A }
3735, 36syl6eqr 2526 . 2  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
3816, 37pm2.61i 164 1  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   _Vcvv 3113   (/)c0 3785   {csn 4027   <.cop 4033   U.cuni 4245   {copab 4504    X. cxp 4997   dom cdm 4999   ` cfv 5588  (class class class)co 6285   {coprab 6286    |-> cmpt2 6287   1stc1st 6783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator