MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sr Structured version   Unicode version

Theorem 1sr 9456
Description: The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1sr  |-  1R  e.  R.

Proof of Theorem 1sr
StepHypRef Expression
1 1pr 9391 . . . . 5  |-  1P  e.  P.
2 addclpr 9394 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 672 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 opelxpi 5017 . . . 4  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  <. ( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
53, 1, 4mp2an 672 . . 3  |-  <. ( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )
6 enrex 9442 . . . 4  |-  ~R  e.  _V
76ecelqsi 7365 . . 3  |-  ( <.
( 1P  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
85, 7ax-mp 5 . 2  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
9 df-1r 9437 . 2  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
10 df-nr 9432 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
118, 9, 103eltr4i 2542 1  |-  1R  e.  R.
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1802   <.cop 4016    X. cxp 4983  (class class class)co 6277   [cec 7307   /.cqs 7308   P.cnp 9235   1Pc1p 9236    +P. cpp 9237    ~R cer 9240   R.cnr 9241   1Rc1r 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-omul 7133  df-er 7309  df-ec 7311  df-qs 7315  df-ni 9248  df-pli 9249  df-mi 9250  df-lti 9251  df-plpq 9284  df-mpq 9285  df-ltpq 9286  df-enq 9287  df-nq 9288  df-erq 9289  df-plq 9290  df-mq 9291  df-1nq 9292  df-rq 9293  df-ltnq 9294  df-np 9357  df-1p 9358  df-plp 9359  df-enr 9431  df-nr 9432  df-1r 9437
This theorem is referenced by:  1ne0sr  9471  supsr  9487  ax1cn  9524  axicn  9525  axi2m1  9534  ax1ne0  9535  ax1rid  9536  axcnre  9539
  Copyright terms: Public domain W3C validator